The red mud accident of October 4, 2010, in Ajka (Hungary) contaminated a vast area with caustic, saline red mud (pH 12) that contains several toxic trace metals above soil limits. Red mud was characterized and its toxicity for plants was measured to evaluate the soil contamination risks. Red mud radioactivity (e.g., (238)U) is about 10-fold above soil background and previous assessments revealed that radiation risk is limited to indoor radon. The plant toxicity and trace metal availability was tested with mixtures of this red mud and a local noncontaminated soil up to a 16% dry weight fraction. Increasing red mud applications increased soil pH to maximally 8.3 and soil solution EC to 12 dS m(-1). Shoot yield of barley seedlings was affected by 25% at 5% red mud in soil and above. Red mud increased shoot Cu, Cr, Fe, and Ni concentrations; however, none of these exceed toxic limits reported elsewhere. Moreover, NaOH amended reference treatments showed similar yield reductions and similar changes in shoot composition. Foliar diagnostics suggest that Na (>1% in affected plants) is the prime cause of growth effects in red mud and in corresponding NaOH amended soils. Shoot Cd and Pb concentrations decreased by increasing applications or were unaffected. Leaching amended soils (3 pore volumes) did not completely remove the Na injury, likely because soil structure was deteriorated. The foliar composition and the NaOH reference experiment allow concluding that the Na salinity, not the trace metal contamination, is the main concern for this red mud in soil.
The radon absorption ability and the track etch properties of the polycarbonate material of commercial compact disks make them very useful as sensitive retrospective 222Rn detectors. The basic idea is to remove, after exposure, a surface layer that is thicker than the range of the alpha particles of the 222Rn and 220Rn progenies and to count the electrochemically etched tracks at the corresponding depths (>80 microm). The effects on the response due to differences in pressure, temperature, and humidity have been studied experimentally. The effect of the growing of 210Po after long-term exposures was also estimated. The effect of all listed factors except the temperature is either absent or restricted to maximum--about 10% for the very extreme cases. The variation of the response at 83 microm depth over the temperature interval 15-25 degrees C is +/-12% around the 20 degrees C value. The dependence of the calibration factor on the etched depth beneath the surface was studied at 4 different temperatures within the range expected indoors. The results show that the depth dependence is exponential with the parameters of the exponent also being dependent on the temperature. In practice, using the track density obtained in two or more depths beneath the compact disk's front surface, an a posteriori temperature correction could be made. By this correction it is possible to substantially reduce the bias in the results due to the unknown temperature during exposure. The results imply that by using home stored compact disks long-term retrospective 222Rn measurements could be made with an uncertainty that could be potentially better than 10%. The useful range of the method starts at about 3 Bq m(-3) (for 10 y exposure time) and appears to cover practically the whole range of indoors 222Rn concentrations.
No evidence for excessive thyroid cancer incidence around the Belgian nuclear power plants was found. On the other hand, an increased incidence of thyroid cancer was observed around the sites with other nuclear activities. Further research is recommended to verify whether the observed increases could be related to the site-specific nuclear activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.