Summary
1.Interference between foraging animals can be quantified directly only through intensive studies. A quicker alternative is to predict the strength of interference using behaviour-based models. We describe a field method to parameterize an interference model for shorebirds, Charadrii. 2. Kleptoparasitic attack distance is the main factor affecting the strength of interference but has rarely been measured. Attack distance is related to handling time, a frequently measured parameter, allowing the model to be parameterized for systems in which attack distance has not been measured. 3. The model accurately predicts the strength of interference between oystercatchers Haematopus ostralegus L. feeding on cockles Cerastoderma edule L. and the absence of interference between bar-tailed godwits Limosa lapponica L. feeding on lugworms Arenicola marina L. at low competitor densities. 4. We predict the strength of interference in black-tailed godwit Limosa limosa L. and oystercatcher systems in which it has not been measured previously. The strength of interference is almost entirely determined by attack distance; interference is stronger in systems with longer attacks. Interference is usually weaker in black-tailed godwits because handling time is generally shorter and this limits attack distance. 5. The interference model can be parameterized much more quickly than the alternative of measuring interference directly. Behaviour-based models have the potential to be a valuable tool for predicting the strength of interference.
Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.