Utilizing the cerebral microdialysis technique, we have compared in vivo the effects of selective MAO-A, MAO-B, and nonselective MAO inhibitors on striatal extracellular levels of dopamine (DA) and DA metabolites (DOPAC and HVA). The measurements were made in rats both under basal conditions and following L-DOPA administration. Extracellular levels of dopamine were enhanced and DA metabolite levels strongly inhibited both under basal conditions and following L-DOPA administration by pretreatment with the nonselective MAO inhibitor pargyline and the MAO-A selective inhibitors clorgyline and Ro 41-1049. The MAO-B inhibitor deprenyl had no effect on basal DA, HVA, or DOPAC levels. Nevertheless, deprenyl significantly increased DA and decreased DOPAC levels following exogenous L-DOPA administration, a finding compatible with a significant glial metabolism of DA formed from exogenous L-DOPA. We conclude that DA metabolism under basal conditions is primarily mediated by MAO-A. In contrast, both MAO-A and MAO-B mediate DA formation when L-DOPA is administered exogenously. The efficacy of newer, reversible agents which lack the "cheese effect" such as Ro 41-1049 are comparable to the irreversible MAO-A inhibitor clorgyline. The possible relevance of these findings for the treatment of Parkinson's disease is discussed.
We report a patient with a parkinsonian syndrome induced by sertraline (Zoloft), an SSRI antidepressant, whose symptoms resolved after the drug was discontinued. This case prompted us to investigate the effect of sertraline on dopamine metabolism in animals. Sertraline (30 mg/kg, i.p.) or placebo (vehicle) was administered to two groups of six normal, anesthetized rats and using cerebral microdyalisis extracellular striatal levels of dopamine, the dopamine metabolites (HVA and DOPAC), as well as the serotonin metabolite 5-HIIA were monitored. In animals pre-treated with sertraline, DOPAC, HVA, and 5-HIAA levels were significantly decreased compared to control animals (p < 0.01). These data indicate that sertraline has an effect on dopamine metabolism, which may alter function in the striatum and induce a parkinsonian syndrome.
A paucity of studies are available concerning the comparative therapeutic effectiveness of presently available dopamine agonist agents in the control of Parkinson symptoms. To provide a basis for resolving this issue, we measured the circling response in unilaterally nigrotomized (6-OHDA) rats following the administration of ropinirole, pramipexole, pergolide, bromocriptine, and cabergoline. Cabergoline, and to a lesser extent pergolide, produced the most vigorous and longest lasting circling response. This response was sustained with administration of these agents over a nine day period. Bromocriptine, pramipexole and ropinirole were all less effective. These results suggest that dopamine agonists whose effect is primarily on D1 and D2 receptors are more effective than those whose actions do not include D1 activation.
Inhibitors of the enzyme catechol-O-methyl transferase (COMT) may be useful adjuncts to L-DOPA in the treatment of Parkinson's disease as they offer the possibility of increasing the availability of the amino acid. It is unknown whether a COMT inhibitor which penetrates the blood-brain barrier is preferable to one restricted to extra-cerebral inhibition. We measured liver and brain COMT activity two hours following administration of two COMT inhibitors: entacapone (ENT), mainly peripherally acting, and dinitrocatechol (DNC), peripheral and central acting. As expected, the full spectrum inhibitor DNC (30 mg/kg) induced a near total inhibition of liver and brain COMT activity. Unexpectedly, however, ENT, at 30 mg/kg, produced the same degree of liver and brain COMT inhibition as DNC; using 10mg/kg, ENT still inhibited both liver and brain COMT activity by 80%. Only at 2.5 and 5 mg/kg did ENT achieve a differential inhibition of liver (80% inhibition) versus brain (10-30% inhibition) COMT activity. In a second series of experiments, we administered ENT (2.5, 10, and 30 mg/kg) and DNC (30 mg/kg) to rats and monitored extracellular striatal dopamine and dopamine metabolite levels with cerebral microdialysis both under basal conditions and following L-DOPA/carbidopa administration. No compound modified basal striatal levels of dopamine. ENT at 30 mg/kg (but not 2.5 or 10 mg), as well as DNC, decreased striatal levels of the methylated dopamine metabolite homovanillic acid (HVA). When L-DOPA/carbidopa was administered, dopamine formation was greatest and HVA formation least in animals pretreated with DNC and 30 mg/kg ENT (but not 2.5 or 10 mg/kg ENT). The finding that ENT at doses relatively specific for peripheral enzyme inhibition did not promote dopamine or inhibit HVA formation is most likely due to the 20% residual liver COMT activity present when the inhibitor was used at less than full doses. Our data indicate that DNC and ENT both inhibit striatal HVA formation and increase dopamine formation from exogenously administered L-DOPA. The dopamine promoting effect of ENT is only present, however, at doses which inhibit central as well as peripheral COMT activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.