Group B streptococcal (GBS) meningitis remains a devastating disease. The absence of an animal model reproducing the natural infectious process has limited our understanding of the disease and, consequently, delayed the development of effective treatments. We describe here a mouse model in which bacteria are transmitted to the offspring from vaginally colonised pregnant females, the natural route of infection. We show that GBS strain BM110, belonging to the CC17 clonal complex, is more virulent in this vertical transmission model than the isogenic mutant BM110∆cylE, which is deprived of hemolysin/cytolysin. Pups exposed to the more virulent strain exhibit higher mortality rates and lung inflammation than those exposed to the attenuated strain. Moreover, pups that survive to BM110 infection present neurological developmental disability, revealed by impaired learning performance and memory in adulthood. The use of this new mouse model, that reproduces key steps of GBS infection in newborns, will promote a better understanding of the physiopathology of GBS-induced meningitis.
We present a novel sensing approach for ambient ozone detection based on deep-ultraviolet (DUV) cavity-enhanced absorption spectroscopy (CEAS) using a laser driven light source (LDLS). The LDLS has broadband spectral output which, with filtering, provides illumination between ~230–280 nm. The lamp light is coupled to an optical cavity formed from a pair of high-reflectivity (R~0.99) mirrors to yield an effective path length of ~58 m. The CEAS signal is detected with a UV spectrometer at the cavity output and spectra are fitted to yield the ozone concentration. We find a good sensor accuracy of <~2% error and sensor precision of ~0.3 ppb (for measurement times of ~5 s). The small-volume (<~0.1 L) optical cavity is amenable to a fast response with a sensor (10–90%) response time of ~0.5 s. Demonstrative sampling of outdoor air is also shown with favorable agreement against a reference analyzer. The DUV-CEAS sensor compares favorably against other ozone detection instruments and may be particularly useful for ground-level sampling including that from mobile platforms. The sensor development work presented here can also inform of the possibilities of DUV-CEAS with LDLSs for the detection of other ambient species including volatile organic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.