The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
The region of the genome of D. lebanonensis that contains the Adh gene and the downstream Adh-dup gene was sequenced. The structure of the two genes is the same as has been described for D. melanogaster. Adh has two promoters and Adh-dup has only one putative promoter. The levels of expression of the two genes in this species are dramatically different. Hybridizing the same Northern blots with a specific probe for Adh-dup, we did not find transcripts for this gene in D. lebanonensis. The level of Adh distal transcript in adults of D. lebanonensis is five times greater than that of D. melanogaster adults. The maximum levels of proximal transcript are attained at different larval stages in the two species, being three times higher in D. melanogaster late-second-instar larvae than in D. lebanonensis first-instar larvae. The level of Adh transcripts allowed us to determine distal and proximal initiation transcription sites, the position of the first intron, the use of two polyadenylation signals, and the heterogeneity of polyadenylation sites. Temporal and spatial expression profiles of the Adh gene of D. lebanonensis show qualitative differences compared with D. melanogaster. Adh and Adh-dup evolve differently as shown by the synonymous and nonsynonymous substitution rates for the coding region of both genes when compared across two species of the melanogaster group, two of the obscura group of the subgenus Sophophora and D. lebanonensis of the victoria group of the subgenus Scaptodrsophila. Synonymous rates for Adh are approximately half those for Adh-dup, while nonsynonymous rates for Adh are generally higher than those for Adh-dup. Adh shows 76.8% identities at the protein level and 70.2% identities at the nucleotide level while Adh-dup shows 83.7% identities at the protein level and 67.5% identities at the nucleotide level. Codon usage for Adh-dup is shown to be less biased than for Adh, which could explain the higher synonymous rates and the generally lower nonsynonymous substitution rates in Adh-dup compared with Adh. Phylogenetic trees reconstructed by distance matrix and parsimony methods show that Sophophora and Scaptodrosophila subgenera diverged shortly after the separation from the Drosophila subgenus.
We have carried out two equivalent selection experiments to increase and decrease heat shock resistance of Drosophila subobscura adults, using an indirect selection method that avoids excessive consanguinity. Heat shock was 33±0.5 °C at saturation humidity. Control lines showed a rapid change of the physiological trait as a consequence of laboratory culture conditions, expressed as a decrease both in heat shock resistance and in the initial population variability for heat shock resistance. Thus, this reduction of variability seems to consist in the loss of those combinations of genes that confer high resistance to heat shock. After eight generations of selection, the selected lines were differentiated from their respective control lines, and the selection response obtained was similar in "resistant" and "sensitive" lines. Differences in survival of progeny of reciprocal crosses between selected lines suggest that inheritance of heat resistance may depend in part on the origin of egg cytoplasm.
Two replicate selection experiments to increase and decrease heat shock resistance of Drosophila subobscura adults were carried out maintaining control lines. In the present paper, the chromosomal-inversion and enzymatic polymorphism variation with selection is analyzed. The results indicate an erratic variation of chromosomal arrangement frequencies for practically all the chromosomes in the selected lines, showing a loss of the less frequent arrangements especially in sensitive lines. Only the A chromosome and the O + 4 arrangement show a behaviour that may not be due to random effects, which points to the possible existence of heat shock factor(s) in these chromosomes. Similarly, an erratic variation of allele frequencies is observed for all the enzymes studied (Aph, Pept-1) except for the Hk-1 enzyme. We cannot establish the possible participation of this locus in heat shock resistance from the results obtained up to now. A significant decrease in heterozygosity is detected in sensitive lines from chromosomal-inversion polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.