Base isolation techniques have emerged as the most effective seismic damage mitigation strategies. Several types of aseismic devices for base isolation have been invented, studied, and used. Out of several isolation systems, sliding isolation systems are popular due to their operational simplicity and ease of manufacturing. This article discusses the historical development of passive sliding isolation systems, such as pure friction systems, friction pendulum systems, and isolators with other sliding surface geometries. Moreover, multiple surface isolation systems and their behavior as well as the effectiveness of using complementary devices with standalone passive isolation devices are examined. Furthermore, the article explored the various modeling techniques adopted for base-isolated single and multi-degree freedom building structures. Special attention has been given to the techniques available for modeling the complex phenomena of sliding and non-sliding phases of sliding bearings. The discussion is further extended to the development in the contemporary areas of seismic isolation, such as active and hybrid isolation systems. Although a significant amount of research is carried out in the area of active and hybrid isolation systems, the passive sliding isolation system still has not lost its appeal due to its ease of adaptability to the structures.
Globally, tanks play a major part in the provision of access to clean drinking water to the human population. Beyond aiding in the supply of fresh water, tanks are also essential for ensuring good sanitary conditions for people and for livestock. Many countries have realized that a robust water supply and a robust sanitation infrastructure are necessary for sustainable growth. Therefore, there is large demand for the construction of storage tanks. Further, liquid storage tanks are crucial structures which must continue to be operational even after a catastrophic natural event, such as an earthquake, to support rehabilitation efforts. From an engineering point of view, the various forces acting on the tanks and the behaviour of the tanks under various loads are important issues which need to be addressed for a safe design. Analyses of the tanks are challenging due to the interaction between the fluid and tank wall. Thus, researchers have conducted several investigations to understand the performance of storage tanks subjected to earthquakes by considering this interaction. This paper discusses the historical development of various modelling techniques of storage tanks. The interaction with the soil also influences the behaviour of the tanks, and hence, in this paper, various modelling approaches for soil structure interaction are also reviewed. Further, a brief history of various systems of base isolation and modelling approaches of base-isolated structures are also discussed in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.