The water–air interface is a globally widespread habitat for interactions between prey and predators. We experimentally manipulated water surface conditions (flat, smooth waves, three levels of current-induced turbulence) and digitally quantified the visual integrity of above-surface models from a subsurface perspective. Progressive fragmentation was present in each of the models (upright heron, crouched heron, vertical block, horizontal block) with increased departure from flat surface conditions. Smooth directional waves produced multiple horizontal bands (shadows) that moved across the models while surface currents distorted the profile, including progressive disintegration of the models appearance into multiple fragments of different sizes. This fragmentation is caused by scattered surface irregularities interacting with waves and is accentuated at the broken periphery of the optical window, reducing recognition of the models. Unexpectedly, we found that bands and fragments emerging from different surface conditions resemble common frontal plumage patterns on some Ardeidae and shorebirds (Charadriiformes). While these natural plumages are widely recognized to reflect a diversity of adaptations, including camouflage in terrestrial habitats, we suggest that their resemblance to water surface-induced fragmentation might also reflect foraging adaptations of predators though the water–air interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.