Address matching is a crucial step in geocoding; however, this step forms a bottleneck for geocoding accuracy, as precise input is the biggest challenge for establishing perfect matches. Matches still have to be established despite the inevitability of incorrect address inputs such as misspellings, abbreviations, informal and non-standard names, slangs, or coded terms. Thus, this study suggests an address geocoding system using machine learning to enhance the address matching implemented on street-based addresses. Three different kinds of machine learning methods are tested to find the best method showing the highest accuracy. The performance of address matching using machine learning models is compared to multiple text similarity metrics, which are generally used for the word matching. It was proved that extreme gradient boosting with the optimal hyper-parameters was the best machine learning method with the highest accuracy in the address matching process, and the accuracy of extreme gradient boosting outperformed similarity metrics when using training data or input data. The address matching process using machine learning achieved high accuracy and can be applied to any geocoding systems to precisely convert addresses into geographic coordinates for various research and applications, including car navigation.
Nowadays, the importance and utilization of spatial information are recognized. Particularly in urban areas, the demand for indoor spatial information draws attention and most commonly requires high-precision 3D data. However accurate, most methodologies present problems in construction cost and ease of updating. Images are accessible and are useful to express indoor space, but pixel data cannot be applied directly to provide indoor services. A network-based topological data gives information about the spatial relationships of the spaces depicted by the image, as well as enables recognition of these spaces and the objects contained within. In this paper, we present a data fusion methodology between image data and a network-based topological data, without the need for data conversion, use of a reference data, or a separate data model. Using the concept of a Spatial Extended Point (SEP), we implement this methodology to establish a correspondence between omnidirectional images and IndoorGML data to provide an indoor spatial service. The proposed algorithm used position information identified by a user in the image to define a 3D region to be used to distinguish correspondence with the IndoorGML and indoor POI data. We experiment with a corridor-type indoor space and construct an indoor navigation platform.
Abstract. Nowadays, the complexity of structures in urban environments and the interest in location-based applications increase simultaneously. Along with this is the rise in demand for the firm establishment of data models representing these spaces. Establishing network models that portray topological relationships of space have strengthened support for navigation applications. However, researchers have revisited the limitations of existing standards. As analogous standards have specifications for expressing space at various scales, most have focused on outdoor space or the geometric aspect. Hence, this paper proposes subspacing requirements for a Level of Detail (LOD) model for network-based topological data. We examine various constraints that influence space partition and align these with various application cases for indoor navigation. Through these, we investigate appropriate space subdivision approaches for each level according to applicable constraints and recommended applications. This study poses as an initial study towards establishing a general framework for implementing a 3D hierarchical network-based topological data model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.