Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.