Phagocytes of the smooth dogfish (Mustelus canis) contain no endogenous peroxidase within their lysosomes and constitute models for cells genetically deficient in lysosomal enzymes such as myeloperoxidase. We have obtained uptake of over 50% of exogenous horseradish peroxidase, provided the enzyme is exhibited to cells after incorporation into liposomes coated with heat-aggregated (620, 10 min), isologous IgM. Trapping of horseradish peroxidase (EC 1.11.1.7) by liposomes was established by chromatographic resolution (Sephadex G-200; Sepharose 2B and 4B) of free enzyme from that associated with liposomes; liposome-associated horseradish peroxidase, together with trapped markers of the aqueous compartment (glucose, CrO4=), were excluded, and free enzyme and markers were retained. Enzyme and marker trapping was not electrostatic, varied with the molar ratio of charged membrane components, and was reversed by detergent lysis (Triton X-100) of liposomes. Uptake at 300 of aggregated IgM-coated liposomes containing trapped horseradish peroxidase exceeded that of free enzyme by 100-fold, and was more efficient than uptake of horseradish peroxidase presented in uncoated liposomes or in liposomes coated with native IgM. After phagocytosis, peroxidaserich liposomes were localized exclusively in lysosomes of the phagocytes by ultrastructural histochemistry; the enzyme displayed over 50% latency to osmotic lysis. This method may prove to be of general use in the provision of exogenous enzymes to phagocytic cells genetically deficient in lysosomal hydrolases.
Velvetleaf (Abutilon theophrastiMedik. # ABUTH) is difficult to control with existing weed control strategies. Some measure of control can be obtained with a fungus,Colletotrichum coccodes(Wallr.) Hughes, used as a bioherbicide, but when the bioherbicide application was combined with the plant growth regulator thidiazuron (N-phenyl-N′-1,2,3-thidiazol-5-yl-urea), weed control was substantially improved. Thidiazuron alone interfered with normal development of velvetleaf, causing stunting and initiation of axillary bud growth. Tank mix applications ofC. coccodesand thidiazuron acted synergistically to increase velvetleaf mortality. WhenC. coccodeswas applied 10 days after thidiazuron as a split application, weed control was less than for tank mix applications. However, two applications ofC. coccodesplus thidiazuron were more effective than equivalent single tank mix applications. Under laboratory conditions, high concentrations of thidiazuron (2× field application rates) inhibited growth ofC. coccodes, but at field application rates thidiazuron did not reduce disease development. Combinations of thidiazuron andC. coccodesmay provide effective control of velvetleaf in the field.
Although foliar diseases of alfalfa occur throughout the United States wherever alfalfa is grown, little work has been done to quantify yield losses caused by foliar pathogens since the late 1980s. To quantify the yield losses caused by foliar diseases of alfalfa, field experiments were performed in Iowa, Ohio, Vermont, and Wisconsin from 1995 to 1998. Different fungicides and fungicide application frequencies were used to obtain different levels of foliar disease in alfalfa. Visual disease and remote sensing assessments were performed weekly to determine the relationships between disease assessments and alfalfa yield. Visual disease assessments of percentage of defoliation, disease incidence, and disease severity were performed weekly, approximately five to six times during each alfalfa growth cycle. Remote sensing assessments also were obtained weekly by measuring the percentage of sunlight reflected from alfalfa canopies using handheld, multispectral radiometers. Yield loss estimates were calculated as the yield difference between the fungicide treatment with the highest yield and the nonfungicide control, divided by the yield obtained from the highest yielding fungicide treatment × 100. Over the 4-year period, significant alfalfa yield losses (P ≤ 0.05) occurred on 22 of the 48 harvest dates for the four states. The average significant yield loss for the 22 harvests was 19.3%. Both visual and percentage of reflectance assessments were used as independent variables in linear regression models to quantify the relationships between assessments and alfalfa yield. From 1995 to 1998, visual disease assessments were performed for a total of 209 dates and remote sensing assessments were performed on 198 dates from the four states. Yield models were developed for each of these assessment dates. There were 26/209, 26/209, and 17/209 significant yield models based on percentage of defoliation, disease incidence, and disease severity, respectively. Most of the significant models were for disease assessments performed on or within 1 or 2 weeks of the date of alfalfa harvest. When the significant models were averaged, percentage of defoliation, disease incidence, and disease severity explained 51, 55, and 52% of the variation in alfalfa yield, respectively. There were a total of 68/198 significant alfalfa yield models based on remote sensing assessments, and the significant models (averaged) explained 62% of the variation in alfalfa yield. Alfalfa foliar diseases continue to have a significant negative impact on alfalfa yields in the United States and remote sensing appears to offer a better means to quantify the impact of foliar diseases on alfalfa yield compared with visual assessment methods.
Most fungicide sprays applied to apple orchards in the New England states are targeted at the management of apple scab. Researchers have developed action thresholds that aid in decision-making on whether early spring fungicide applications could be eliminated without a significant increase in the incidence of fruit scab at harvest. To facilitate grower adoption of these thresholds, a simplified, sequential sampling technique in autumn to determine the “scab risk” of an orchard for the following spring was proposed in the scientific literature. However, this technique had not been evaluated in the field. In autumn 1999, 2000, and 2001, orchards were evaluated using the new sequential sampling technique to determine scab risk. Risk ratings were compared with those obtained by the original, nonsequential procedure in each orchard. Data also were examined using a simulation sequential sampling computer program to determine whether or not risk ratings would change if different trees or shoots were used. In two of the assessed orchards, “delayed-spray” experiments involving two treatments (a delayed-spray and full-spray treatment) were conducted in 2000 and 2001. Delayed-spray replicates were to receive no fungicide sprays until after the third primary infection period (but before the fourth) or until the pink stage of bud development, whichever came first; full-spray replicates received fungicide sprays starting at the green-tip stage of bud development. The sequential sampling technique provided scab-risk ratings consistent with the original, nonsequential procedure, at potentially significant time savings. Also, following the delayed-spray strategy in low-risk orchards did not result in significant differences in fruit scab at harvest compared with initiating spraying at the green-tip phenological bud stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.