A free-Lagrange numerical method is implemented to simulate the axisymmetric jetting collapse of air bubbles in water. This is performed for both lithotripter shock-induced collapses of initially stable bubbles, and for free-running cases where the bubble initially contains an overpressure. The code is validated using two test problems (shock-induced bubble collapse using a step shock, and shock–water column interaction) and the results are compared to numerical and experimental results. For the free-running cases, simulations are conducted for a bubble of initial radius 0.3 mm located near a rigid boundary and near an aluminium layer (planar and notched surfaces). The simulations suggest that the boundary and its distance from the bubble influence the flow dynamics, inducing bubble elongation and jetting. They also indicate stress concentration in the aluminium and the likelihood of aluminium deformation associated with bubble collapse events. For the shock-induced collapse, a lithotripter shock, consisting of 56 MPa compressive and −10 MPa tensile waves, interacts with a bubble of initial radius 0.04 mm located in a free field (case 1) and near a rigid boundary (case 2). The interaction of the shock with the bubble causes it to involute and a liquid jet is formed that achieves a velocity exceeding 1.2 km s−1 for case 1 and 2.6 km s−1 for case 2. The impact of the jet on the downstream wall of the bubble generates a blast wave with peak overpressure exceeding 1 GPa and 1.75 GPa for cases 1 and 2, respectively. The results show that the simulation technique retains sharply resolved gas/liquid interfaces regardless of the degree of geometric deformation, and reveal details of the dynamics of bubble collapse. The effects of compressibility are included for both liquid and gas phases, whereas stress distributions can be predicted within elastic–plastic solid surfaces (both planar and notched) in proximity to cavitation events. There is a movie with the online version of the paper.
Recent clinical trials have shown the efficacy of a passive acoustic device used during shock wave lithotripsy (SWL) treatment. The device uses the far-field acoustic emissions resulting from the interaction of the therapeutic shock waves with the tissue and kidney stone to diagnose the effectiveness of each shock in contributing to stone fragmentation. This paper details simulations that supported the development of that device by extending computational fluid dynamics (CFD) simulations of the flow and near-field pressures associated with shock-induced bubble collapse to allow estimation of those far-field acoustic emissions. This is a required stage in the development of the device, because current computational resources are not sufficient to simulate the far-field emissions to ranges of O(10 cm) using CFD. Similarly, they are insufficient to cover the duration of the entire cavitation event, and here simulate only the first part of the interaction of the bubble with the lithotripter shock wave in order to demonstrate the methods by which the far-field acoustic emissions resulting from the interaction can be estimated. A free-Lagrange method (FLM) is used to simulate the collapse of initially stable air bubbles in water as a result of their interaction with a planar lithotripter shock. To estimate the far-field acoustic emissions from the interaction, this paper developed two numerical codes using the Kirchhoff and Ffowcs William-Hawkings (FW-H) formulations. When coupled to the FLM code, they can be used to estimate the far-field acoustic emissions of cavitation events. The limitation of the technique is that it assumes that no significant nonlinear acoustic propagation occurs outside the control surface. Methods are outlined for ameliorating this problem if, as here, computational resources cannot compute the flow field to sufficient distance, although for the clinical situation discussed, this limitation is tempered by the effect of tissue absorption, which here is incorporated through the standard derating procedure. This approach allowed identification of the sources of, and explanation of trends seen in, the characteristics of the far-field emissions observed in clinic, to an extent that was sufficient for the development of this clinical device.
We present a study of shock-induced collapse of single bubbles near/attached to an elastic–plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble–wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic–plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a ‘mushroom shape’. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
This study presents the key simulation and decision stage of a multi-disciplinary project to develop a hospital device for monitoring the effectiveness of kidney stone fragmentation by shock wave lithotripsy (SWL). The device analyses, in real time, the pressure fields detected by sensors placed on the patient's torso, fields generated by the interaction of the incident shock wave, cavitation, kidney stone and soft tissue. Earlier free-Lagrange simulations of those interactions were restricted (by limited computational resources) to computational domains within a few centimetres of the stone. Later studies estimated the far-field pressures generated when those interactions involved only single bubbles. This study extends the free-Lagrange method to quantify the bubblebubble interaction as a function of their separation. This, in turn, allowed identification of the validity of using a model of non-interacting bubbles to obtain estimations of the far-field pressures from 1000 bubbles distributed within the focus of the SWL field. Up to this point in the multi-disciplinary project, the design of the clinical device had been led by the simulations. This study records the decision point when the project's direction had to be led by far more costly clinical trials instead of the relatively inexpensive simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.