Deep learning (DL) is a branch of machine learning and artificial intelligence that has been applied to many areas in different domains such as health care and drug design. Cancer prognosis estimates the ultimate fate of a cancer subject and provides survival estimation of the subjects. An accurate and timely diagnostic and prognostic decision will greatly benefit cancer subjects. DL has emerged as a technology of choice due to the availability of high computational resources. The main components in a standard computer-aided design (CAD) system are preprocessing, feature recognition, extraction and selection, categorization, and performance assessment. Reduction of costs associated with sequencing systems offers a myriad of opportunities for building precise models for cancer diagnosis and prognosis prediction. In this survey, we provided a summary of current works where DL has helped to determine the best models for the cancer diagnosis and prognosis prediction tasks. DL is a generic model requiring minimal data manipulations and achieves better results while working with enormous volumes of data. Aims are to scrutinize the influence of DL systems using histopathology images, present a summary of state-of-the-art DL methods, and give directions to future researchers to refine the existing methods.
Molecular communication (MC) system is an emerging technology for nanoscale networks. Therefore, there is a requirement to develop a new end-to-end MC model, which may deliver new perceptions into the aspect of these nanoscale networks. This paper aims to implement the MC framework as an endto-end deep reinforcement learning (DRL) auto encoder (AE). The technique enables training of the MC system without any information about the actual channel (medium) model. For training the receiver and transmitter, the proposed techniques are supervised learning and DRL, respectively. The results show that the performance of the DRL autoencoder (AE) based system achieves nearly the same performance as the traditional modulation and demodulation methods in term of bit-error-rate (BER) under the Gaussian noise channel but with less complexity. The proposed technique can also be joint with the other coding methods to improve their performance. INDEX TERMSMolecular communication (MC), deep reinforcement learning (DRL), auto encoder (AE), bit-error-rate (BER).
Today, with the development of industry and mechanized life style, the prevalence of the disease is rising steadily as well. Observing at the trend and lifecycle style, its predict that after ten years around 23.6 million people die because of Cardiovascular Disease (CVD). For that reason, aim to use Deep Learning Techniques (DLTs), to analysis stable CVD that would give valuable awareness to decrease misdiagnosis in the Robust Healthcare Industry (RHI). An objective of this paper is first, Molecular diagnosis (MD), and second using Deep Learning Techniques DLTs, to synthesis and characterize to accumulate (raw information) from CVD patients, those who admitted the emergency section between January (2018 to December 2019). We are using Artificial Neural Network (ANN), model characterize to predict CVD patients and configuration, Feature selection (FS), Mean Square Error (MSE), accuracy, sensitivity. The ANN accuracy is 98.4, K-nearest neighbor (KNN) accuracy is 98.01%, Naïve Bayes (NB), accuracy is 96.99%. Decision tree (DT), accuracy is 87.81%. Our robust data driven model explore the efficient accuracy rate to predict CVD patients. The ANN model in term of their efficient in disease analysis, and prognosis of the RHI. INDEX TERMS Artificial neural network (ANN), cardiovascular disease (CVD), molecular diagnostic (MD), Robust Healthcare Industry (RHI).
Developing new treatments for emerging infectious diseases in infectious and noninfectious diseases has attracted a particular attention. The emergence of viral diseases is expected to accelerate; these data indicate the need for a proactive approach to develop widely active family specific and cross family therapies for future disease outbreaks. Viral disease such as pneumonia, severe acute respiratory syndrome type 2, HIV infection, and Hepatitis-C virus can cause directly and indirectly cardiovascular disease (CVD). Emphasis should be placed not only on the development of broad-spectrum molecules and antibodies but also on host factor therapy, including the reutilization of previously approved or developing drugs. Another new class of therapeutics with great antiviral therapeutic potential is molecular communication networks using deep learning autoencoder (DL-AEs). The use of DL-AEs for diagnosis and prognosis prediction of infectious and noninfectious diseases has attracted a particular attention. MCN is map to molecular signaling and communication that are found inside and outside the human body where the goal is to develop a new black box mechanism that can serve the future robust healthcare industry (HCI). MCN has the ability to characterize the signaling process between cells and infectious disease locations at various levels of the human body called point-to-point MCN through DL-AE and provide targeted drug delivery (TDD) environment. Through MCN, and DL-AE healthcare provider can remotely measure biological signals and control certain processes in the required organism for the maintenance of the patient’s health state. We use biomicrodevices to promote the real-time monitoring of human health and storage of the gathered data in the cloud. In this paper, we use the DL-based AE approach to design and implement a new drug source and target for the MCN under white Gaussian noise. Simulation results show that transceiver executions for a given medium model that reduces the bit error rate which can be learned. Then, next development of molecular diagnosis such as heart sounds is classified. Furthermore, biohealth interface for the inside and outside human body mechanism is presented, comparative perspective with up-to-date current situation about MCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.