The structure of amorphous precursor species formed under hydrothermal conditions, prior to the onset of crystallization of microporous aluminosilicate zeolites, is determined employing high-energy X-ray diffraction (HEXRD). The investigation, combined with the use of reverse Monte Carlo modelling suggests that even numbered rings, especially 4R (R: ring) and 6R, which are the dominant aluminosilicate rings in zeolite A, have already been produced in the precursor. The model implies that the formation of double 4Rs occurs at the final step of the crystallization of zeolite A.
The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl 3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, 57 Fe Mössbauer spectroscopy, 27 Al NMR, EELS, HR-TEM, XRD, N 2 physisorption, and FTIR spectroscopy) were applied in order to correlate the changes occurring in the local environment of the Fe atoms with migration and aggregation phenomena of iron at micro-and macroscopic scale. Mononuclear isolated Fe-species are formed upon FeCl 3 sublimation, which are transformed into binuclear Fe-complexes during washing. During calcination, iron detached from the Brønsted sites migrates to the external surface of the zeolite, finally leading to significant agglomeration. Nevertheless, agglomeration of Fe can be strongly suppressed by adequately tuning the conditions of the calcination. 2002 Elsevier Science (USA). All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.