Pseudomonas sp. strain P51 is able to use 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene as sole carbon and energy sources. Two gene clusters involved in the degradation of these compounds were identified on a catabolic plasmid, pP51, with a size of 110 kb by using hybridization. They were further characterized by cloning in Escherichia coli, Pseudomonas putida KT2442, and Alcaligenes eutrophus JMP222. Expression studies in these organisms showed that the upper-pathway genes (tcbA and tcbB) code for the conversion of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene to 3,4-dichlorocatechol and 3,4,6-trichlorocatechol, respectively, by means of a dioxygenase system and a dehydrogenase. The lower-pathway genes have the order tcbC-tcbD-tcbE and encode a catechol 1,2-dioxygenase II, a cycloisomerase II, and a hydrolase II, respectively. The combined action of these enzymes degrades 3,4-dichlorocatechol and 3,4,6-trichlorocatechol to a chloromaleylacetic acid. The release of one chlorine atom from 3,4-dichlorocatechol takes place during lactonization of 2,3-dichloromuconic acid.In recent years, several bacteria have been isolated that were able to degrade chlorinated aromatic compounds, such as chlorinated benzoic acids, chlorinated phenols (27, 39), and even chlorinated benzenes and chlorinated biphenyls (12,24). Bacteria able to use chlorinated benzenes as sole carbon and energy substrates (15,25,30,35) were found to oxidize the chlorinated benzene to a chlorocatechol by the action of a dioxygenase enzyme and a dehydrogenase. The chlorocatechol could then be degraded via a pathway similar to the one described for 3-chlorobenzoate metabolism in Pseudomonas sp. strain B13, i.e., ring cleavage by a catechol 1,2-dioxygenase II enzyme, lactonization by a cycloisomerase II, and hydrolysis by a hydrolase II, yielding chloromaleylacetic acid (7,8,(27)(28)(29). These enzymes were shown to have higher affinity toward chlorinated substrates than did their counterparts in benzoate metabolism. Chloromaleylacetic acid would then be converted further by the enzyme maleylacetate reductase to yield 0-ketoadipate. One
An organism, identified as an Alcaligenes sp., was isolated from an enrichment culture in which 1,4-dichlorobenzene served as the sole carbon and energy source. During growth with 1,4-dichlorobenzene in pure culture, stoichiometric amounts of chloride were released. Growth experiments and oxygen uptake rates with other chlorinated aromatic compounds revealed a high degree of specificity of the initial dioxygenase. cis-1,2-Dihydroxycyclohexa-3,5-diene oxidoreductase and 1,2-pyrocatechase, but not 2,3-pyrocatechase, were found in cell extracts, while 3,6-dichlorocatechol and (2,5-dichloro)muconic acid could be detected as intermediates during degradation of 1,4-dichlorobenzene. It is proposed that dioxygenases are involved in the initial steps of 1,4-dichlorobenzene degradation, while ring opening proceeds via ortho cleavage.
Methanogenic sludge granules grown on waste water from a sugar refinery consisted of several bacterial morphotypes embedded in a matrix of extracellular material. Comparison of critical point drying and freeze-drying methods for preparing samples for scanning electron microscopy to determine the presence of extracellular material indicated that the former method permitted observations of extracellular material and intact cells. The effects of different extraction methods used for isolation of these extracellular polymers was also investigated by scanning electron microscopy. Of the various extraction procedures (EDTA, NaOH, autoclaving, water–phenol), water–phenol left most of the cells intact and was found to be a very efficient method of extraction. Extracellular polymers equivalent to 10–20 mg hexose/g of granules were extracted. The high resistance of the granules against disintegration by various chemical methods suggested that different extracellular polymers and probably different groups of organisms contributed to the matrix in which the bacteria were embedded. The chemical composition of the granules did not differ from the composition of bacteria in general. The buoyant density of 1.00–1.05 g∙g−1of the granules indicated that a simple agglomeration was the mechanism by which these methanogenic consortia improved their settling characteristics.
In an attempt to obtain bacteria growing on 1,2-dimethylbenzene as sole carbon and energy source two different strains were isolated. One was identified as an Arthrobacter strain, the other as a Corynebacterium strain. Corynebacterium strain C125 was further investigated. The organism was not capable to grow on 1,3- and 1,4-dimethylbenzene. cis-1,2-Dihydroxycyclohexa-3,5-diene oxidoreductase and 3,4-dimethylcatechol-2,3-dioxygenase activity was found in cell extracts. When 3,4-dimethylcatechol was added to cell extract of 1,2-dimethylbenzene-grown cells, first a compound with the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate was formed and subsequently acetate was produced. It is proposed that dioxygenases are involved in the initial steps of 1,2-dimethylbenzene degradation, and ring opening proceeds via meta-cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.