Search for high-mass dilepton resonances using139 fb −1 of p p collision data collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of √ s = 13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb −1 . A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E 6 -motivated Z ψ boson. Also presented are limits on Heavy Vector Triplet model couplings.ATLAS [14-16] is a multipurpose detector with a forward-backward symmetric cylindrical geometry with respect to the LHC beam axis.1 The innermost layers consist of tracking detectors in the pseudorapidity range |η| < 2.5. This inner detector (ID) is surrounded by a thin superconducting solenoid that provides a 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡ (∆η) 2 + (∆φ) 2 .
The χ(b)(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at sqrt[s] = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb(-1), these states are reconstructed through their radiative decays to Υ(1S,2S) with Υ → μ+ μ-. In addition to the mass peaks corresponding to the decay modes χ(b)(1P,2P) → Υ(1S)γ, a new structure centered at a mass of 10.530 ± 0.005(stat) ± 0.009(syst) GeV is also observed, in both the Υ(1S)γ and Υ(2S)γ decay modes. This structure is interpreted as the χ(b)(3P) system.
Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √ s = 13 TeVThe ATLAS Collaboration Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton-proton collision data produced by the LHC at √ s = 13 TeV. The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z → ee and J/ψ → ee decays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.
The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb^{-1} of pp collisions at sqrt[s]=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.