The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for largescale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the AT-LAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.
We give a detailed description of the measurement of the W boson mass, MW , performed on an integrated luminosity of 4.3 fb −1 , which is based on similar techniques as used for our previous measurement done on an independent data set of 1 fb −1 of data. The data were collected using the D0 detector at the Fermilab Tevatron Collider. This data set yields 1.68 × 10 6 W → eν candidate events. We measure the mass using the transverse mass, electron transverse momentum, and missing transverse energy distributions. The MW measurements using the transverse mass and the electron transverse momentum distributions are the most precise of these three and are combined to give MW = 80.367 ± 0.013 (stat) ± 0.022 (syst) GeV = 80.367 ± 0.026 GeV. When combined with our earlier measurement on 1 fb −1 of data, we obtain MW = 80.375 ± 0.023 GeV.
Proton-proton collisions at √ s = 7 TeV and heavy ion collisions at √ s NN = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.