In order to carry out optimal daily irrigation programming for vineyard production, different variables have to be considered. Some of them are related to soil (soil moisture variation), other variables are related to crop (variety, dendrometry, leaf temperature) and finally some climatic variables are considered (reference evapotranspiration ETo and rainfall). This daily irrigation programming is traditionally based on physical-mathematical models (soil water balance, radiation, drainage among others). This is a model-driven methodology. However, in this paper a data-driven methodology is proposed. With this methodology, the daily water consumption of a crop is estimated from daily values acquired through the variables described above. This approach predicts minimal water consumption. In addition, the significant variables in daily water consumption according to crop and phenological phases are determined. The experiment was developed in a vineyard farm located in Villena, Spain. Representative daily data of five vineyard varieties (Cabernet Blanc, Merlot, Petit Verdot, Sauvignon Blanc and Syrah) were collected from 2005 to 2009. These data were subsequently analysed by Data Mining techniques that are oriented to extraction and rule systems classification. This methodology will be used in the development of applied algorithms in software for decision tools in irrigation programming for vineyard production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.