A field experiment was conducted in the years 2012-2014, at the Plant Breeding Station in Polanowice near Krakow (220 m a.s.l.). The aim of the study was to investigate the effect of silicon (Si) on seed yield and quality of timothy-grass (Phleum pratense L.) of “Egida” cultivar. A univariate field experiment in randomized block design was repeated four times, and the area of the experimental plots was 10 m2. The soil on the experimental plots was a loess derived haplic phaeozem of bonitation class I. The experimental factor was spraying with a silicon formulation in the form of Optysil® fertilizer at three doses: 0.2, 0.5 and 0.8 dm3·ha−1. During the growing season, the plants were evaluated for their height, leaf greenness index (SPAD) and general condition. After harvesting, the seed yield and quality were assessed. The study revealed a significant effect of silicon on plant height, general condition and yield and quality of the seeds. The plants treated with silicon showed lower infestation rate with pathogens and pests than the control ones. Foliar fertilization with the highest dose of the silicon formulation (0.8 dm3·ha−1) caused a significant increase in seed yield as compared with control. The effects were also satisfactory in the plants treated with the formulation at 0.5 dm3·ha−1. The seeds obtained from silicon-treated plants were bigger, as revealed by the weight of 1000 seeds, and exhibited higher germination ability than the control seeds.
The purpose of this research was to assess the functional value of the “Super Trawnik” lawn mixture. The studies were carried out between 2017 and 2019 at the Experimental Station of the University of Agriculture in Krakow (50°07′ N, 20°05′ E), and the experimental factor was the AGRO-SORB® Folium, a biostimulant containing amino acids and applied at three doses: 1, 2, and 3 L·ha−1. Lawn visual quality was assessed on a 9-point scale, with 10–11 mowings at 4 cm during the growing period. An increase in the concentration of the stimulant applied as a spray resulted in a significant increase in its effectiveness; plants in plots with the highest dose of amino acid solution (Variant III) had the highest aesthetic and functional values. The AGRO-SORB® Folium reduced the occurrence of fungal diseases; compared to control plants, there was a 16% reduction of Fusarium patch (Microdochium nivale) infection and a 20% reduction of Dreschlera leaf spot (Drechslera siccans). Satisfactory effects were also recorded on plots where the product was applied at a dose of 2 L·ha−1 (Variant II). Those plots had more favourably rated turf, with higher resistance of plants to Fusarium patch by 12% and to Dreschlera leaf spot by 20% compared to control.
Abstract:Titanium is one of a plant biostimulators. It stimulates life processes, growth and development, as well as affects physiological and biochemical pathways, often increasing biomass production and enhancing yield. An open field experiment was conducted in the years 2011-2013 in Polanowice, Poland to investigate the effects of titanium foliar fertilization on the growth of timothy grass (Phleum pratense L.). This single-factor, randomized block design study was performed in four replicates on research plots with the area of 10 m 2 each. The substrate was black loess soil (chernozem) typical for top class farmland. Titanium fertilization via leaf spray was performed with a water solution of Tytanit® at three doses of 0.2, 0.4, and 0.8 dm 3 · ha -1. Foliar fertilization with the highest dose of Tytanit® significantly increased seed yield, thousand grain weight and germination capacity. Moreover, the middle dose of Tytanit® (0.4 dm 3 · ha ) was enough to observe a positive effect on the sample.
The aim of the study was to determine the yield and chemical composition of milk from TMR-(group I) and pasture-fed Simmental cows (group II). The study was conducted with second and third lactation Simmental cows between 30 and 200 days of lactation. The present research showed that compared to TMR feeding, the use of summer pasture feeding and proper supplementation with high-energy feeds allow for higher milk yield and higher nutritive value of the milk. Compared to TMR-fed cows (group I), milk from pastured cows (group II) was characterized by a more beneficial composition of protein fractions, and a higher content of α-lactalbumin, β-lactoglobulin and lactoferrin. It also contained more vitamins A and E, calcium, magnesium and iodine, and had a significantly (P≤0.05) lower cholesterol content. The milk of cows from group II contained over twice as much CLA (1.59% of all acids) and 35% more n-3 PUFA, which resulted in a more beneficial n-6/n-3 fatty acids ratio of 2.88. In addition, this milk contained significantly (P≤0.05) less saturated fatty acids (SFA) and significantly more (P≤0.05) mono-(MUFA) and polyunsaturated fatty acids (PUFA). Consequently, the MUFA:SFA and PUFA:SFA ratios in this group were more favourable at 0.448 and 0.066, respectively. Also the content of desirable fatty acids (DFA) with hypocholesterolemic effects was higher in group II, which resulted in a more beneficial DFA:OFA ratio of 0.8 in this group. In conclusion, the use of summer pasture feeding and a proper supplemented feeding ration in Simmental cows with high-energy feeds allow for high milk yield and high nutritive value of the milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.