The world's common rules (Quantum Physics, Electronics, Computational Chemistry and Astronomy) find their normal mathematical explanation in language of differential equations, so finding optimum numerical solution methods for these equations are very important. In this paper, using an artificial neural network (ANN) a numerical approach is designed to solve a specific system of differential equations such that the training process of the ANN calculates the optimal values for the coefficients of third order Runge Kutta method. To validate our approach, we performed some experiments by solving two body problem using coefficients obtained by ANN and also two other well-known coefficients namely Classical and Heun. The results show that the ANN approach has a better performance in compare with two other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.