Regeneration science has been studied using tissue engineering techniques due to the self-renewal difficulties of damaged or degenerated cartilage. A scaffold with biodegradability and biocompatibility features plays a key role in developing cartilage tissue similar to human biological materials. Herein, we have fabricated three-dimensional sponge using purified alginate for the regeneration of chondrocytes cells and formation of cartilage. We demonstrated that the alginate purification can effectively minimize inflammatory reaction through reducing the content of mannuronic acid causing immune rejection. Cartilage regeneration research was performed using three-dimensional non-purified and purified alginate sponges synthesized by modified Korbutt method. In vitro cell viability and specific gene expression in the cartilage cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and reverse transcriptase-polymerase chain reaction (RT-PCR) after seeding chondrocytes on the as-fabricated sponges. Specific extracellular matrix (ECM) of chondrocytes, sGAG, and the content of collagen were also measured. Histological staining was carried out after purified alginate sponge seeded with chondrocytes and was implanted in subcutaneous nude mouse followed by extraction. Compared to the non-purified ones, the purified alginate sponges showed positive effects on maintaining affinities and phenotype of chondrocytes. From these results, it can be suggested that the purified alginate sponges provide a promising platform for cartilage regeneration.
Adult articular cartilage tissue has poor capability of self-repair. Therefore, a variety of tissue engineering approaches are motivated by the clinical need for articular repair. Alginate has been used as a biomaterial for cartilage regeneration. The alginate is a natural polymer that is extracted from seaweeds and puri¯cation. However, the main drawback is the immune rejection in vivo. To overcome this problem, we have developed the biocompability of alginate using modi¯ed Korbutt method. After alginate was puri¯ed, puri¯ed alginate microcapsules were used in cartilage regeneration. Chondrocytes were seeded in puri¯ed and nonpuri¯ed alginate microcapsules, and then cell viability, proliferation and phenotype were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Reverse transcriptase-polymerase chain reaction (RT-PCR) was conducted to con¯rm mRNA expression on collagen type I and collagen type II for chondrocytes phenotype. Hematoxylin and eosin (H&E) and Safranin-O histological staining showed tissue growth at the interface during the¯rst 10 days. In this study, chondrocytes in puri¯ed alginate microcapsules had higher cell viability, proliferation and more phenotype expression than those in nonpuri¯ed alginate microcapsules. The results suggest that the puri¯ed alginate microcapsule is useful for cartilage regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.