Group B Streptococcus (GBS) is an important cause of maternal and neonatal morbidity and mortality in many parts of the world. Asymptomatic colonisation of the vagina and rectum with Group B streptococci is common in pregnancy. Maternal colonisation of GBS can vary depending on ethnicity and geographical distribution. Vertical transmission of this organism from mother to foetus may lead to neonatal GBS disease. Intra-partum use of antibiotics in these women has led to a decrease in the rate of early onset but not late onset GBS disease. Identification of women with GBS is the key factor in the prevention of perinatal GBS disease. There are different screening strategies available to identify women at risk of perinatal GBS disease. Clinicians continue to face the challenge of choosing between preventive strategies to reduce the impact of perinatal GBS disease. Controversy exists regarding the ideal preventive strategy. In India, the mortality and morbidity associated with the GBS disease remains largely a under-recognised problem. This comprehensive review summarises the salient features of GBS disease and discusses the epidemiology, risk factors, screening strategies, intra-partum antibiotic prophylaxis with an Indian perspective and how it compares with the Western nations.
This review aims to enlighten the readers regarding the past, present and future of stem cells in the treatment of Diabetes. Diabetes is one of the leading causes of morbidity and mortality, affecting more than 415 million people worldwide. It is estimated that one in ten adults will have diabetes by 2030. Diabetes is mainly due to reduction in β-cell mass which are responsible for insulin production. Exogenous administration of insulin is having good impact on restoring glucose homeostasis, but it does not entirely control the minute-to-minute fluctuations in systemic blood glucose. Recently cellular-based therapies have been established for exogenous insulin administration by modern pump technology. One of the most interesting therapies involves substitution of insulin producing islet cells by transplantation. But lack of donor material and lifelong immunosuppression made the technique unfeasible. These restrictions have led to exploration of other sources of β-cells, one of the prospects being the stem cells. Several types of stem cells have Review Article been used to make pancreatic β-cells, including human embryonic stem cells / induced pluripotent stem cells, pancreatic stem / progenitor cells, and non-pancreatic stem cells. There is also evidence of adult β-cells regeneration through β-cell replication and cellular reprogramming. Functional restoration of existing β-cells, transplantation of stem cells or stem cell-derived β-like cells might provide new opportunities for treatment. In conclusion it can be said that the research is still wide open to arrive at the efficient reprogramming of various types of stem cells to destine them towards functional β-cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.