Wear is the progressive loss of material from the operating surface of a body occurring as a result of relative motion at the surface, while friction is the main means of controlling the input of energy in a system. The tribosystem approach proposes analysing the contact on both the material and the energetic planes, but the relationships between the different planes are not well established. In this paper, the basis of the energetic approach is discussed and the application of the model to experimental studies on bulk materials reveals a promising and powerful tool to analyse experimental results and to use in the mechanical design.
Graphene oxide (GO) and functionalized carbon nanotubes (f-CNTs) (each in the concentration range of 0.01-1.00 wt/wt%) were investigated as the reinforcing agent in a poly(methyl methacrylate) (PMMA)/hydroxyapatite (HA) bone cement. Mixed results were obtained for the changes in the mechanical properties determined (storage modulus, bending strength, and elastic modulus) for the reinforced cement relative to the unreinforced counterpart; that is, some property changes were increased while others were decreased. We postulate that this outcome is a consequence of the fact that each of the nanofillers hampered the polymerization process in the cement; specifically, the nanofiller acts as a scavenger of the radicals produced during polymerization reaction due to the delocalized π-bonds. Results obtained from the chemical structure and polymer chain size distribution determined, respectively, by nuclear magnetic resonance and size exclusion chromatography analysis, on the polymer extracted from the specimens support the postulated mechanism. Furthermore, in the case of the 0.5 wt/wt% GO-reinforced cement, we showed that when the concentration of the radical species in the PMMA bone cement was doubled, mechanical properties markedly improved (relative to the value in the unreinforced cement), suggesting suppression of the aforementioned scavenger activity.
a b s t r a c tNovel chitosan based polyelectrolyte complexes (PEC) were developed and optimized in order to obtain films possessing the optimal functional properties (flexibility, resistance, water vapour transmission rate and bioadhesion) to be applied on skin. The development was based on the combination of chitosan and two polyacrylic acid (PAA) polymers with different crosslinkers and crosslinking densities. The interaction between the polymers was maximized controlling the pH, and by forming the films at a pH value close to the pK a of the respective components as identified by potentiometric and turbidimetric titrations. The action of glycerol, PEG200, Hydrovance and trehalose upon the functional properties of the films was also evaluated. Glycerol was found to improve the film properties in terms of flexibility, resistance and water vapour transmission rate (WVTR) with a maximum effect at 30%. The application of a pressure sensitive adhesive (PSA) significantly improved bioadhesion with a negligible influence in the resistance and flexibility of the films.The optimized film, including adhesive, has shown very good properties for application in the skin and represents a very promising formulation for further incorporation of drugs for topical and transdermal administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.