We provide a simple and complete construction of infinite families of consistent, modular-covariant pairs of characters satisfying the basic requirements to describe twocharacter RCFT. These correspond to solutions of generic second-order modular linear differential equations. To find these solutions, we first construct "quasi-characters" from the Kaneko-Zagier equation and subsequent works by Kaneko and collaborators, together with coset dual generalisations that we provide in this paper. We relate our construction to the Hecke images recently discussed by Harvey and Wu.
We advance holographic constructions for the entanglement negativity of bipartite states in a class of (1+1)-dimensional Galilean conformal field theories dual to asymptotically flat three dimensional bulk geometries described by Einstein Gravity and Topologically Massive Gravity. The construction involves specific algebraic sums of the lengths of bulk extremal curves homologous to certain combinations of the intervals appropriate to such bipartite states.
Our analysis exactly reproduces the corresponding replica technique results in the large central charge limit. We substantiate our construction through a semi classical analysis involving the geometric monodromy technique for the case of two disjoint intervals in such holographic Galilean conformal field theories.
We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $$ T\overline{T} $$
T
T
¯
, we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.
We establish a construction for the entanglement wedge in asymptotically flat bulk geometries for subsystems in dual (1+1)-dimensional Galilean conformal field theories in the context of flat space holography. In this connection we propose a definition for the bulk entanglement wedge cross section for bipartite states of such dual non relativistic conformal field theories. Utilizing our construction for the entanglement wedge cross section we compute the entanglement negativity for such bipartite states through the generalization of an earlier proposal, in the context of the usual AdS/CFT scenario, to flat space holography. The entanglement negativity obtained from our construction exactly reproduces earlier holographic results and match with the corresponding field theory replica technique results in the large central charge limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.