“Test-and-slaughter” has been successful in industrialized countries to control and eradicate tuberculosis from cattle; however, this strategy is too expensive for developing nations, where the prevalence is especially high. Vaccination with the Calmette-Guérin (BCG) strain has been shown to protect against the development of lesions in vaccinated animals: mouse, cattle and wildlife species. In this study, the immune response and the pathology of vaccinated (BCG-prime and BCG prime-CFP-boosted) and unvaccinated (controls) calves were evaluated under experimental settings. A 106 CFU dose of the BCG strain was inoculated subcutaneously on the neck to two groups of ten animas each. Thirty days after vaccination, one of the vaccinated groups was boosted with an M. bovis culture filtrate protein (CFP). Three months after vaccination, the three groups of animals were challenged with 5×105 CFU via intranasal by aerosol with a field strain of M. bovis. The immune response was monitored throughout the study. Protection was assessed based on immune response (IFN-g release) prechallenge, presence of visible lesions in lymph nodes and lungs at slaughter, and presence of bacilli in lymph nodes and lung samples in histological analysis. Vaccinated cattle, either with the BCG alone or with BCG and boosted with CFP showed higher IFN-g response, fewer lesions, and fewer bacilli per lesion than unvaccinated controls after challenge. Animals with low levels of IFN-g postvaccine-prechallenge showed more lesions than animals with high levels. Results from this study support the argument that vaccination could be incorporated into control programs to reduce the incidence of TB in cattle in countries with high prevalence.
In the present study, we have characterized the renal response to inhibition of endogenous nitric oxide (NO) synthesis [intravenous NG-nitro-L-arginine methyl ester (L-NAME) for 3 h] in anesthetized cirrhotic rats, with (ASC) and without (CIR) ascites, at doses that do not change blood pressure (BP). Administration of L-NAME induced opposite effects on water (UV) and sodium (UNaV) excretion in cirrhotic and control animals. Infusion of 1 microgram.kg-1.min-1 of L-NAME in CIR (n = 5) decreased renal plasma flow (RPF) at the end of the 3-h period, whereas UV, UNaV, and glomerular filtration rate (GFR) were unaltered. In contrast, infusion of L-NAME at 10 micrograms.kg-1.min-1 in six more CIR increased UV and UNaV significantly by the 1st h, without changes in BP or GFR, and these parameters remained elevated throughout the experiment. Infusion of 1 microgram.kg-1.min-1 in ASC (n = 6) did not change BP or GFR but significantly enhanced UV and UNaV after the 1st h. These effects were prevented by pretreatment with L-arginine (0.1 mg.kg-1.min-1) in another group of ASC infused with 1 microgram.kg-1.min-1 of L-NAME. These results indicate that, in ASC and CIR cirrhotic rats, inhibition of NO synthesis at nonpressor does improves renal excretion of sodium and water via a decrease in tubular reabsorption. NO is an important mediator of the renal excretory and hemodynamic alterations of experimental liver cirrhosis.
The Notch signalling pathway has recently been linked to T helper 1 (Th1)/T helper 2 (Th2) cell polarization via a mechanism involving differential expression of Notch ligands, Delta‐like and Jagged, in antigen‐presenting cells. However, whether stimuli other than pathogen‐derived factors are involved in the regulation of Notch ligand expression in dendritic cells (DCs) remains unknown. Here, we address the effect of T helper cells (Th1 and Th2) on Delta‐like 4 and Jagged 2 expression in bone marrow–derived DCs. We demonstrate that both Th1 and Th2 cells induce Delta‐like 4 mRNA expression in DCs, in a process that is, in part, mediated by CD40 signalling. In contrast, only Th2 cells induce a significant increase in Jagged 2 mRNA levels in DCs. Additionally, we show that IL‐4, a hallmark Th2 cytokine, plays a role in Jagged 2 expression, as evidenced by the fact that cholera toxin, a Th2‐promoting stimulus, induces Jagged 2 mRNA expression in DCs only in the presence of IL‐4. Finally, we demonstrate that DCs also express Notch 1 and that this expression is downregulated by IL‐4. These data suggest that Notch ligands are differentially regulated in DCs: Delta‐like 4 is regulated by T helper cells and by pathogen‐derived Th1 stimuli, whereas Jagged 2 is regulated by Th2 cells and pathogen‐derived Th2‐promoting stimuli. Based on our results, we propose that the positive feedback loop that Th2 cells exert on T cell polarization may involve the induction of Jagged 2 expression in DCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.