Massive hill slope erosion in Madagascar is represented by the widespread gullies called 'lavaka'. Lavakas may be result of natural processes that involves a combination of continuous tectonic uplift that maintains a high angle of repose, ground water sapping at the soil-saprolite interface, and subsequent collapse of the soil surface due to low grade seismic activity in the central highlands. Forest cover ranges between 25-45 %
We investigated the architecture of the greater Congo Basin, one of the largest and least-well-studied sedimentary basins on any continent. Seismograms from a large number of M > 4.5 earthquakes within and surrounding the African plate were used to make event-to-station Rayleigh wave group velocity measurements between periods of 5 and 100 s. Group velocities for discrete periods across the basin, obtained by inverting the event-station measurements, were jointly modeled with gravity data to obtain a three-dimensional S-wave and density model of the basin. The model corroborates the existence of two previously suggested subbasins, one to the north and one to the south, each ~8 km deep and separated by an east-west structural high. Our results favor a salt tectonics origin for the structural high but cannot rule out uplifted basement rock. The northern subbasin is offset to the west from the southern subbasin, consistent with previous studies suggesting sinistral motion along basement faults during periods of transpressional tectonics in late Neoproterozoic–early Paleozoic times.
The giant Tohoku-Oki earthquake of 11 March 2011 in offshore Japan did not only generate tsunami waves in the ocean but also infrasound (or acoustic-gravity) waves in the atmosphere. We identified ultra-long-period signals (>500 s) in the recordings of infrasound stations in northeast Asia, the northwest Pacific, and Alaska. Their source was found close to the earthquake epicenter. Therefore, we conclude that in general, infrasound observations after a large offshore earthquake are evidence that the surface and the floor of the sea have been significantly vertically displaced by the earthquake and that a tsunami must be expected. Since infrasound is traveling faster than the tsunami, such information may be used for tsunami early warnings.
Abstract. The great Sumatra-Andaman earthquake of 26 December 2004 caused seismic waves propagating through the solid Earth, tsunami waves propagating through the ocean and infrasound or acoustic-gravity waves propagating through the atmosphere. Since the infrasound wave travels faster than its associated tsunami, it is for warning purposes very intriguing to study the possibility of infrasound generation directly at the earthquake source. Garces et al. (2005) and Le emphasized that infrasound was generated by mountainous islands near the epicenter and by tsunami propagation along the continental shelf to the Bay of Bengal. Mikumo et al. (2008) concluded from the analysis of travel times and amplitudes of first arriving acoustic-gravity waves with periods of about 400-700 s that these waves are caused by coseismic motion of the sea surface mainly to the west of the Nicobar islands in the open seas. We reanalyzed the acoustic-gravity waves and corrected the first arrival times of Mikumo et al. (2008) by up to 20 min. We found the source of the first arriving acoustic-gravity wave about 300 km to the north of the US Geological Survey earthquake epicenter. This confirms the result of Mikumo et al. (2008) that sea level changes at the earthquake source cause long period acoustic-gravity waves, which indicate that a tsunami was generated. Therefore, a denser local network of infrasound stations may be helpful for tsunami warnings, not only for very large earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.