The European Union Common Catalogue (EUCC) for potato contains over 1000 varieties. Each year member states add varieties to the list after they have undergone Distinctness, Uniformity and Stability (DUS) testing according to international guidelines. A rapid and robust method for variety identification to aid the management and maintenance of existing variety collections and for the screening of new candidate varieties would therefore be a highly useful tool for DUS testing stations. A database containing key morphological characteristics and microsatellite data was constructed for varieties on the 2006 list of the EUCC for potato. Rules for scoring SSR markers in different laboratories were established to allow a harmonized scoring of markers. Almost all varieties (99.5%) were shown to have unique molecular profiles and in pair wise comparisons 99.99% of all variety pairs could be distinguished. This clearly shows the versatility of the markers and database for identifying potato samples.
SummarySingle nucleotide polymorphisms are the most common polymorphism in plant and animal genomes and, as such, are the logical choice for marker-assisted selection. However, many plants are also polyploid, and marker-assisted selection can be complicated by the presence of highly similar, but non-allelic, homoeologous sequences. Despite this, there is practical and academic demand for high-throughput genotyping in several polyploid crop species, such as allohexaploid wheat. In this paper, we present such a system, which utilizes public single nucleotide polymorphisms previously identified in both agronomically important genes and in randomly selected, mapped, expressed sequence tags developed by the wheat community. To achieve relatively high levels of multiplexing, we used non-amplified genomic DNA and padlock probe pairs, together with high annealing temperatures, to differentiate between similar sequences in the wheat genome. Our results suggest that padlock probes are capable of discriminating between homoeologous sequences and hence can be used to efficiently genotype wheat varieties.
With the numbers of new varieties of potato obtaining Plant Breeders' Rights increasing yearly, the reliable maintenance of large culture collections is becoming more problematic. Additionally, the differentiation of cultivars based on morphological characteristics is a highly skilled and time-consuming task and for these reasons a rapid and robust method for variety differentiation has become highly desirable. By screening a number of microsatellite (simple sequence repeat, SSR) markers we have developed a set of six that can be used to differentiate over 400 cultivars, including those on the UK National List, but excluding somaclonal variants (e.g. Red King Edward and King Edward). The whole process from tuber to accurate identification can be carried out in a single day.
Potato cyst nematode (PCN) is a damaging soilborne pest of potatoes which can cause major crop losses. In 2010, a new European Union directive (2007/33/EC) on the control of PCN came into force. Under the new directive, seed potatoes can only be planted on land which has been found to be free from PCN infestation following an official soil test. A major consequence of the new directive was the introduction of a new harmonized soil sampling rate resulting in a threefold increase in the number of samples requiring testing. To manage this increase with the same staffing resources, we have replaced the traditional diagnostic methods. A system has been developed for the processing of soil samples, extraction of DNA from float material, and detection of PCN by high-throughput real-time PCR. Approximately 17,000 samples are analyzed each year using this method. This chapter describes the high-throughput processes for the production of float material from soil samples, DNA extraction from the entire float, and subsequent detection and identification of PCN within these samples.
Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen‐informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species.We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field‐scale resolution. Most fields contain a single mitotype, one‐fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying ‘pathoscape’. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of ‘hybrids’. This study provides a method for accurate, quantitative and high‐throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.