Aims. We present a new library of high-resolution synthetic spectra based on the stellar atmosphere code PHOENIX that can be used for a wide range of applications of spectral analysis and stellar parameter synthesis. Methods. The spherical mode of PHOENIX was used to create model atmospheres and to derive detailed synthetic stellar spectra from them. We present a new self-consistent way of describing micro-turbulence for our model atmospheres. Results. The synthetic spectra cover the wavelength range from 500 Å to 5.5 μm with resolutions of R = 500 000 in the optical and near IR, R = 100 000 in the IR and Δλ = 0.1 Å in the UV. The parameter space covers 2300 K ≤ T eff ≤ 12 000 K, 0.0 ≤ log g ≤ +6.0,The library is a work in progress and we expect to extend it up to T eff = 25 000 K.
At a distance of 1.295 parsecs, 1 the red-dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890, or simply Proxima) is the Sun's closest stellar neighbour and one of the best studied low-mass stars. It has an effective temperature of only ∼ 3050 K, a luminosity of ∼0.1 per cent solar, a measured radius of 0.14 R ⊙ 2 and a mass of about 12 per cent the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is ∼ 83 days, 3 and its quiescent activity levels and X-ray luminosity 4 are comparable to the Sun's. New observations reveal the presence of a small planet orbiting Proxima with a minimum mass of 1.3 Earth masses and an orbital period of ∼11.2 days. Its orbital semi-major axis is ∼ 0.05 AU, with an equilibrium temperature in the range where water could be liquid on its surface. 5 The results presented here consist of the analysis of previously obtained Doppler measurements (pre-2016 data), and the confirmation of a signal in a specifically designed follow-up campaign in 2016. The Doppler data comes from two precision radial velocity instruments, both at the European Southern Observatory (ESO): the High Accuracy Radial velocity Planet Searcher (HARPS) and the Ultraviolet and Visual Echelle Spectrograph (UVES). HARPS is a high-resolution stabilized echelle spectrometer installed at the ESO 3.6m telescope (La Silla observatory, Chile), and is calibrated in wavelength using hollow cathode lamps. HARPS has demonstrated radial velocity measurements at ∼1 ms −1 precision over time-scales of years, 6 including on low-mass stars. 7 All HARPS spectra were extracted and calibrated with the standard ESO Data Reduction Software, and radial velocities were measured using a least-squares template matching technique. 7 HARPS data is separated into two datasets. The first set includes all data obtained before 2016 by several programmes (HARPS pre-2016 work, and its value is then used to assess the false-alarm probability (or FAP) of the detection. 14 A FAP below 1% is considered suggestive of periodic variability, and anything below 0.1% is considered to be a significant detection. In the Bayesian framework, signals are first searched using a specialized sampling method 16 that enables exploration of multiple local maxima of the posterior density (the result of this process are the gray lines in Figure 1), and significances are then assessed by obtaining the ratios of evidences of models. If the evidence ratio exceeds some threshold (e.g. B 1 /B 0 > 10 3 ), then the model in the numerator (with one planet) is favoured against the model in the denominator (no planet).A well isolated peak at ∼11.2 days was recovered when analyzing all the night averages in the pre-2016 datasets (Figure 1, panel a). Despite the significance of the signal, the analysis of pre-2016 subsets produced slightly different periods depending on the noise assumptions and which subsets were considered. Confirmation or refutation of this signal at 11.2 days was the main driver for proposing the HARPS PRD campaign. T...
Context. The Kepler space telescope monitors more than 160 000 stars with an unprecedented precision providing the opportunity to study the rotation of thousands of stars. Aims. We present rotation periods for thousands of active stars in the Kepler field derived from Q3 data. In most cases a second period close to the rotation period was detected that we interpreted as surface differential rotation (DR). We show how the absolute and relative shear (ΔΩ and α = ΔΩ/Ω, respectively) correlate with rotation period and effective temperature. Methods. Active stars were selected from the whole sample using the range of the variability amplitude. To detect different periods in the light curves we used the Lomb-Scargle periodogram in a pre-whitening approach to achieve parameters for a global sine fit. The most dominant periods from the fit were associated to different surface rotation periods. Our purely mathematical approach is capable of detecting different periods but cannot distinguish between the physical origins of periodicity. We ascribe the existence of different periods to DR, but spot evolution could also play a role. Because of the large number of stars the period errors are estimated statistically. We thus cannot exclude the existence of false positives among our periods.Results. In our sample of 40 661 active stars we found 24 124 rotation periods P 1 between 0.5 and 45 days, with a mean of P 1 = 16.3 days. The distribution of stars with 0.5 < B − V < 1.0 and ages derived from angular momentum evolution that are younger than 300 Myr is consistent with a constant star-formation rate; the detection among older stars is incomplete probably because of our active sample selection. A second period P 2 within ±30% of the rotation period P 1 was found in 18 616 stars (77.2%). Attributing these two periods to DR we found that for active stars other than the Sun the relative shear α increases with rotation period, and slightly decreases with effective temperature. The absolute shear ΔΩ slightly increases from ΔΩ = 0.079 rad d −1 at T eff = 3500 K to ΔΩ = 0.096 rad d −1 at T eff = 6000 K. Above 6000 K, ΔΩ shows much larger scatter. The dependence of ΔΩ on rotation period is weak over a large period range. Conclusions. Latitudinal differential rotation measured for the first time in more than 18 000 stars provides a comprehensive picture of stellar surface shear. This picture is consistent with major predictions from mean-field theory, and seems to support these models. To what extent our observations are prone to false positives and selection bias has not been fully explored, and needs to be addressed using other data, including the full Kepler time coverage.
The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.
Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims. We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity Analyser (SERVAL), a publicly available python code. Methods. We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results. Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions. We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.