Post-ischemic neurodegeneration remains the principal cause of mortality following cardiac resuscitation. Recent studies have implicated gastrointestinal ischemia in the sepsis-like response associated with the post-cardiac arrest syndrome (PCAS). However, the extent to which the resulting low-grade endotoxemia present in up to 86% of resuscitated patients affects cerebral ischemia-reperfusion injury has not been investigated. Here we report that a single injection of low-dose lipopolysaccharide (50 μg/kg, IP) delivered after global cerebral ischemia (GCI) induces blood-brain barrier permeability, microglial activation, cortical injury, and functional decline in vivo, compared to ischemia alone. And while GCI was sufficient to induce neutrophil (PMN) activation and recruitment to the post-ischemic CNS, minimal endotoxemia exhibited synergistic effects on markers of systemic inflammation including PMN priming, lung damage, and PMN burden within the lung and other non-ischemic organs including the kidney and liver. Our findings predict that acute interventions geared towards blocking the effects of serologically occult endotoxemia in survivors of cardiac arrest will limit delayed neurodegeneration, multi-organ dysfunction and potentially other features of PCAS. This work also introduces lung-brain coupling as a novel therapeutic target with broad effects on innate immune priming and post-ischemic neurodegeneration following cardiac arrest and related cerebrovascular conditions.
The dual specificity phosphatase MAPK phosphatase-1 (MKP-1) feeds back on MAP kinase signaling to regulate metabolic, inflammatory and survival responses. MKP-1 is widely expressed in the central nervous system (CNS) and induced after ischemic stress, although its function in these contexts remains unclear. Here we report that MKP-1 activated several cell death factors, including BCL2 and adenovirus E1B 19 kDa interacting protein 3, and caspases 3 and 12 culminating in apoptotic cell death in vitro. MKP-1 also exerted inhibitory effects on the bZIP transcription factor CCAAT/enhancer-binding protein (C/EBPb), previously shown to have neuroprotective properties. These effects included reduced expression of the full-length C/EBPb variant and hypo-phosphorylation at the MEK-ERK1/2-sensitive Thr 188 site. Notably, enforced expression C/EBPb rescued cells from MKP-1-induced toxicity. Studies performed in knock-out mice indicate that the MKP-1 activity is required to exclude C/EBPb from the nucleus basally, and that MKP-1 antagonizes C/EBPb expression after global forebrain ischemia, particularly within the vulnerable CA1 sector of the hippocampus. Overall, MKP-1 appears to lower the cellular apoptotic threshold by inhibiting C/EBPb and enhancing both BH3 protein expression and cellular caspase activity. Thus, although manipulation of the MKP-1-C/EBPb axis could have therapeutic value in ischemic disorders, our observations using MKP-1 catalytic mutants suggest that approaches geared towards inhibiting MKP-1's phosphatase activity alone may be ineffective.
Selective neuronal vulnerability is a common theme in both acute and chronic diseases affecting the nervous system. This phenomenon is particularly conspicuous after global cerebral ischemia wherein CA1 pyramidal neurons undergo delayed death while surrounding hippocampal regions are relatively spared. While injury in this model can be easily demonstrated using either histological or immunological stains, current methods used to assess the cellular injury present in these biological images lack the precision required to adequately compare treatment effects. To address this shortcoming, we devised a supervised work-flow that can be used to quantify ischemia-induced nuclear condensation using microscopic images. And while we demonstrate the utility of this technique using models of ischemic brain injury, the approach can be readily applied to other paradigms in which programmed cell death is a major component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.