The mechanism of selenium(IV) uptake by maghemite was investigated on both the macroscopic and the molecular level. Maghemite nanoparticles exhibited fast adsorption kinetics toward selenium(IV). Batch experiments showed a decreased sorption with increasing pH (3.5-11). Ionic strength variations (0.01 to 0.1 M NaCl) had no significant influence on selenium(IV) uptake. Electrophoretic mobility measurements revealed a significant shift toward lower values of the isoelectric point of maghemite upon selenium(IV) uptake, suggesting the formation of inner-sphere surface complexes. At the molecular level, using X-ray Absorption Fine-Structure Spectroscopy (EXAFS), the formation of both bidentate binuclear corner-sharing ((2)C) and bidentate mononuclear edge-sharing ((1)E) inner-sphere surface complexes was observed, with a trend toward solely (1)E complexes at high pH. The absence of a tridentate surface complex as observed for arsenic(III) and antimonite(III) might be due to the relatively small size of the Se(IV)O3 unit. These new spectroscopic results can be implemented in reactive transport models to improve the prediction of selenium migration behavior in the environment as well as its monitoring through its interaction with maghemite or maghemite layers at the surface of magnetite. Due to its chemical stability even at low pH and its magnetization properties allowing magnetic separation, maghemite is a promising sorbing phase for the treatment of Se polluted waters.
The e.s.r. spectra of 1-yl, 2-yl and 3'-yl methoxyethyl phosphate radicals derived from CH3OCH2CH2-OPO3H2 by hydrogen abstraction have been measured in aqueous solutions and the hyperfine constants determined. The coupling constants vary strongly with protonation or alkylation of the phosphate group. The 2-yl radicals eliminate phosphate. The rate-constants for the elimination (ke) have been estimated by e.s.r. measurements and by product studies as a function of pH using 60Co gamma-radiolysis. The ke values vary from approximately 0.3 s(-1) for the CH3OCHCH2OPO3--radical and approximately 10(3) s-1 for CH3OCHCH2OPO3H-, to approximately 3 X 10(6) S-1 for CH3OCHCH2OPO3H2. Alkylation of the phosphate group increases the elimination rate-constant to a similar extent as protonation. The results support a recent mechanism which described the OH-radical-induced single-strand breaks of DNA in aqueous solution starting from the C-4' radical of the sugar moiety. It is further concluded the C-4' radical of DNA eliminates the 3'-phosphate group faster than the 5'-phosphate group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.