The number of available materials for Laser Powder Bed Fusion is still limited due to the poor processability of many standard alloys. In particular, the lack of high-strength aluminium alloys, widely used in aerospace and automotive industries, remains a big issue for the spread of beam-based additive manufacturing technologies. In this study, a novel high-strength aluminium alloy for high temperature applications having good processability was developed. The design of the alloy was done based on the chemical composition of the widely used EN AW 2618. This Al-Cu-Mg-Ni-Fe alloy was modified with Ti and B in order to promote the formation of TiB2 nuclei in the liquid phase able to stimulate heterogeneous nucleation of grains and to decrease the hot cracking susceptibility of the material. The new Al alloy was manufactured by gas atomisation and processed by Laser Powder Bed Fusion. Samples produced with optimised parameters featured relative density of 99.91%, with no solidification cracks within their microstructure. After aging, the material revealed upper yield strength and ultimate tensile strength of 495 MPa and 460 MPa, respectively. In addition, the alloy showed tensile strength higher than wrought EN AW 2618 at elevated temperatures.
A modified three-phase model is developed to simulate the drying of Brachiaria brizantha in fluidized beds. In this new model, the constitutive equation of drying kinetics is formulated including both the constant rate and the falling rate mechanisms; the seed shrinkage is taken into account during all drying operation and the transition between bubbling to slugging regime is delineated for estimating the bubble velocity and size. Such modifications improve the mathematical model to better simulate the drying of coarse particles in fluidized beds. The best estimation of the five adjustable model parameters, which are required to define heat and mass transfer mechanisms between interstitial gas and seed particles and to specify the heat loss from dryer walls to ambient air, is attained by incorporating an optimization routine into the computer model program. Having been specially designed to supply data for this model, experiments are performed in a bath laboratory-scale fluidized bed. Additional data are generated to validate the model and program routines. Results show a good agreement between simulated and experimental data, validating the approach used to describe drying kinetics and particle shrinkage.
Abstract. After 5 years from start-up, Arvedi ESP Technology has achieved outstanding performances in terms of production, products and quality. The technology has proved particularly suitable for the production of thin gauge strips (< 2 mm). This paper presents the experiences in the production of high strength and advanced high strength steels, such as micro-alloyed S550MC, dual phase DP600 and ferritic bainitic HR60 in thin gauge strips on the ESP line of Acciaieria Arvedi S.p.A. in Cremona. Some aspects of the industrial production process for these steel grades are highlighted on the basis of casting and rolling parameters and microstructural and mechanical investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.