SummaryThe first generation of forest free-air CO 2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO 2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.
Future scenarios provide challenging, plausible and relevant stories about how the future could unfold. Urban Futures (UF) research has identified a substantial set (>450) of seemingly disparate scenarios published over the period 1997-2011 and within this research, a sub-set of >160 scenarios has been identified (and categorized) based on their narratives according to the structure first proposed by the Global Scenario Group (GSG) in 1997; three world types (Business as Usual, Barbarization, and Great Transitions) and six scenarios, two for each world type (Policy Reform-PR, Market Forces-MF, Breakdown-B, Fortress World-FW, Eco-Communalism-EC and New Sustainability Paradigm-NSP). It is suggested that four of these scenario archetypes (MF, PR, NSP and FW) are sufficiently distinct to facilitate active stakeholder engagement in futures thinking. Moreover they are accompanied by a well-established, internally consistent set of narratives that provide a deeper understanding of the key fundamental drivers (e.g., STEEP-Social, Technological, Economic, Environmental and Political) that could bring about realistic world changes through a push or a pull effect. This is testament to the original concept of the GSG scenarios and their development and refinement over a 16 year period.
Storm events can drive highly variable behavior in catchment nutrient and water fluxes, yet short‐term event dynamics are frequently missed by low‐resolution sampling regimes. In addition, nutrient source zone contributions can vary significantly within and between storm events. Our inability to identify and characterize time‐dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here we utilize an 8 month high‐frequency (hourly) time series of streamflow, nitrate (NO3‐N), dissolved organic carbon (DOC), and hydroclimatic variables for a headwater agricultural catchment. We identified 29 distinct storm events across the monitoring period. These events represented 31% of the time series and contributed disproportionately to nutrient loads (42% of NO3‐N and 43% of DOC) relative to their duration. Regression analysis identified a small subset of hydroclimatological variables (notably precipitation intensity and antecedent conditions) as key drivers of nutrient dynamics during storm events. Hysteresis analysis of nutrient concentration‐discharge relationships highlighted the dynamic activation of discrete NO3‐N and DOC source zones, which varied on an event‐specific basis. Our results highlight the benefits of high‐frequency in situ monitoring for characterizing short‐term nutrient fluxes and unraveling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process‐based insights, which we summarize in a conceptual model, are fundamental to underpinning targeted management measures to reduce nutrient loading of surface waters.
SUMMARYA parametrization of cirrus clouds formed by homogeneous nucleation is improved so that it can be used more easily in general-circulation models (GCMs) and climate models. The improved parametrization is completely analytical and requires no fitting of parameters to models or measurements; it compares well with full microphysical model results even when monodisperse aerosol particles are used in the parametrization to determine cirrus ice-crystal number densities. However, the presence of ice nuclei in the atmosphere can modify the formation of cirrus clouds. If sufficient ice particles have been generated by heterogeneous nucleation, the saturation ratio of the air parcel will never reach that required for homogeneous nucleation. We calculate the critical number density of ice nuclei, above which homogeneous nucleation will be suppressed. The critical number density depends on the temperature, the updraught velocity, and the supersaturation at which ice nuclei activate. The theory points to key uncertainties in our observations of ice nuclei in the upper troposphere; for ice nuclei that activate at relatively low supersaturations, number density is more important than a precise knowledge of the activation supersaturation. Overall, the theory provides a general framework within which to interpret observations and the results of full microphysical cloud models. The theory can provide analytical test cases as benchmarks for the testing of models in development, and can be implemented itself into larger-scale atmospheric models, such as GCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.