Ti-6Al-4V alloy has been widely used in restorative surgery due to its high corrosion resistance and biocompatibility. Nevertheless, some studies showed that V and Al release in the organism might induce cytotoxic effects and neurological disorders, which led to the development of V-free alloys and both V-and Al-free alloys containing Nb, Zr, Ta, or Mo. Among these alloys, Ti-13Nb-13Zr alloy is promising due to its better biomechanical compatibility than Ti-6Al-4V. In this work, the corrosion behavior of Ti, Ti-6Al-4V, and Ti-xNb-13Zr alloys (x ¼ 5, 13, and 20) was evaluated in Ringer's solution (pH 7.5) at 37 8C through open-circuit potential measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy. Spontaneous passivity was observed for all materials in this medium. Low corrosion current densities (in the order of 10 À7 A/cm 2 ) and high impedance values (in the order of 10 5 Vcm 2 at low frequencies) indicated their high corrosion resistance. EIS results showed that the passivating films were constituted of an outer porous layer (very low resistance) and an inner compact layer (high resistance), the latter providing the corrosion resistance of the materials. There was evidence that the Ti-xNb-13Zr alloys were more corrosion resistant than both Ti and Ti-6Al-4V in Ringer's solution.
Titanium alloys exhibit an excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film and some of these alloys (particularly Ti‐6Al‐4V) were chosen for surgical and odontological implants for this resistance and their biocompatibility. Treatments with fluorides (F−) are known as the main method to prevent plaque formation and dental caries. Toothpastes, mouthwashes and prophylactic gels can contain from 200 to 20 000 ppm F− and can present neutral to acidic character, which can affect the corrosion behavior of titanium alloys devices present in the oral cavity. In this work, the behavior of Ti‐6Al‐4V and the new experimental Ti‐23Ta has been evaluated in artificial saliva of pH 2, 5 and 7 and different F− concentrations (0, 1000, 5000 and 10 000 ppm), through open‐circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy. A defined correlation between pH and F− concentration settled the active or passive character of the materials. For both alloys, an active behavior was observed for pH 2 and 1000 to 10 000 ppm F− and for pH 5 and 5000 and 10 000 ppm F−. The passive behavior was observed for the other investigated conditions. The F− concentration increase and pH decrease reduced the corrosion resistance of the alloys and decreased the stability of their passive film. The corrosion behavior of both alloys was very similar, but the Ti‐23Ta alloy generally presented slightly higher corrosion resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.