ResumenSe empleó el método de inyección sumergida de polvos por medio de un gas de arrastre inerte (Ar) con el fin de eliminar el magnesio de la aleación Al-Si A380 a 750°C. Los polvos inyectados al baño de metal fundido fueron zeolita mineral, arena sílice y mezclas de ambas. Las variables de respuesta medidas fueron el contenido de magnesio en el baño metálico respecto al tiempo de inyección y las mermas de metal al final de cada experimento. En el análisis de resultados, la mezcla sílice:zeolita 66:34 % e.p. obtuvo la mayor eficiencia, lográndose una disminución en el contenido de magnesio en el baño metálico de 1 a 0.0066 % e.p. Los productos de reacción se analizaron por difracción de rayos-X, microscopía electrónica de barrido y de transmisión. Los resultados de estos análisis y el empleo del paquete termodinámico FactSage, versión 6, permitieron justificar el mecanismo de reacción entre los minerales y el aluminio líquido.
Palabras claveZeolita; Sílice; Aluminio; Magnesio; Minerales.
Study of the removal mechanism of magnesium from Al-Si liquid alloys using silica base minerals injection AbstractIn order to eliminate magnesium from an A 380 Al-Si alloy at 750°C, the submerged powder injection method, using an inert carrier gas (Ar), was applied. The injected powders in the liquid aluminum bath were zeolite, silica and mixtures of zeolite-silica minerals. For each experiment the response variables were: eliminated magnesium versus injection time and quantity of drosses produced. Chemical analysis by atomic absorption spectrometry showed that mixtures of silica-zeolite 66:34 wt% have the best results with regarding to the removal magnesium from 1 to 0.0066 wt%. During the elimination of magnesium complex stoichiometry compounds were formed due to the reactions among zeolite, water steam and liquid aluminum. These compounds were analyzed by XRD, SEM and TEM. The results obtained, along with using the FactSage 6 thermodynamic software, allowed to elucidate the reaction mechanism between the minerals used and liquid aluminum.
Potassium hexatitanate (PHT) with chemical formula K2Ti6O13 has a tunnel structure formed by TiO2 octahedra sharing edges or corners and with the potassium atoms located in the tunnels. This material has attracted great interest in the areas of photocatalysis, reinforcement of materials, biomaterials, etc. This work summarizes a large number of studies about methods to prepare PHT since particle size can be modified from millimeter to nanometric scale according to the applied method. Likewise, the synthesis method has influenced the material properties as band-gap and the final mechanical performance of composites when the reinforcement is PHT. The knowing of synthesis, properties and applications of PHT is worthwhile for the design of new materials and for the development of new applications taking advantage of their inherent properties.
The objective of this work was to obtain glass-ceramics from stable glasses, with a composition of barium, lead, and potassium titanate phases, for use as semiconductors. For this purpose, the glass-ceramic technique was used to control crystal growth and obtain a fine-grained microstructure. Various glasses containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2 were prepared using a melt-quenching method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed a single amorphous phase of all samples. Infrared spectra confirmed the presence of B-O bonds stretching vibrations of (B3O6)3− boroxol rings and BO3 triangles, as well as Ti-O stretching vibrations of (TiO6/2) and (AlO6/2) octahedral units. Thermal analyses confirmed the presence of one or more crystallization peaks in the range of 700 to 744 °C. On this base, they were heat-treated to promote crystal growth. XRD and SEM detected Ba4Ti12O27, Ti7O13, and BaTiO3 phases, homogeneously distributed throughout the material with fine crystallite size. In addition, crystallized glasses’ (glass-ceramics) properties were determined; the density values were 2.8–3.55 g/cm3; the chemical resistance to acidic and basic media was low; and the band-gap values were in the range of 2.88 to 3.05 eV. These results suggest that crystallized glasses may have application in photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.