The relative levels of mRNA specific for the mouse p53 cellular tumor antigen were determined in various normal adult tissues, embryos, and tumors. All tumors studied contained concentrations of p53 mRNA well above those present in most normal tissues. Normal spleen, however, had p53 mRNA levels comparable to those found in some tumors, despite the fact that they contained barely detectable p53 protein. This apparent discrepancy was found to be due to the extremely rapid turnover rate of p53 in the spleen (half-life, approximately equal to 6 min). In developing fetuses, a marked reduction of p53 mRNA levels was manifest from day 11 onwards, whereas the levels during organogenesis (days 9 to 11) were comparable to those found in undifferentiated embryonic stem cells and in some tumors.
Bordetella pertussis produces a calmodulin‐sensitive adenylate cyclase (AC) which is an essential virulence factor in mammalian pertussis. Here we report the purification and characterization of the toxic form of the enzyme, which penetrates eukaryotic cells and generates high levels of intracellular cAMP. This form was purified from an extract of B.pertussis strain carrying a recombinant plasmid which over‐produced both enzymatic and toxic activities of the enzyme. Western blot analysis of the extract using anti‐B.pertussis AC antibodies detected only one protein of 200 kd. However, gel filtration of the extract resolved two peaks of enzymatic activity. The first peak of aggregated material contained greater than 70% of the total enzymatic activity, and the second peak contained the majority of the toxic activity. Purification of the enzyme from both peaks yielded proteins of 200 kd, with similar biochemical and immunological properties. Yet only the enzyme purified from the second peak could penetrate human lymphocyte and catalyse the formation of intracellular cAMP. B.pertussis AC gene expressed in Escherichia coli produced a calmodulin‐dependent enzyme of 200 kd, which lacked lymphocyte penetration capacity. It is proposed that a post‐translational modification that occurs in B.pertussis but not in E.coli confers upon the 200 kd protein of B.pertussis AC the toxic properties.
Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is one of the most dangerous diseases of cloven-hoofed animals and is a constant threat to the dairy and beef industries in the Middle East and other regions of the world, despite intensive vaccination programmes. In this work, the ability of specific small interfering (si)RNAs to inhibit virus replication in BHK-21 cells was examined. By using bioinformatic computer programs, all FMDV sequences in public-domain databases were analysed. The analysis revealed three regions of at least 22 bp with 100 % identity in all FMDV entries. From these sequences, three specific siRNA molecules were prepared and used to test the ability of siRNAs to inhibit virus replication. By using real-time quantitative PCR to measure the amount of viral RNA in infected cells, it was shown that virus replication was inhibited in cells that were transfected with siRNAs. When viral titres were examined, 100 % inhibition of growth could be demonstrated in cells transfected with a mixture of all three anti-FMDV siRNAs, compared with control cells transfected with anti-LacZ siRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.