We realized a tunable continuous-wave terahertz source with megahertz frequency resolution. The system is based on optical heterodyning of two near-infrared distributed feedback diode lasers, each laser being stabilized by electronic feedback from a low-finesse quadrature interferometer. The control loop permits precisely linear laser frequency scans over >1200 GHz, and a beat signal linewidth of 1 MHz at 80 ms time scale. Using GaAs photomixers and log-periodic antennae, we achieve a signal-to-noise ratio of the terahertz power of >70 dB at 100 GHz and 100 ms integration time, and still approximately 30 dB at 1 THz. As an example for high-resolution terahertz spectroscopy, we characterize the transmission properties of a subwavelength metal grating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.