The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.
Ceftaroline, a recently approved β-lactam antibiotic for treatment of infections by methicillin-resistant Staphylococcus aureus (MRSA), is able to inhibit penicillin-binding protein 2a (PBP2a) by triggering an allosteric conformational change that leads to the opening of the active site. The opened active site is now vulnerable to inhibition by a second molecule of ceftaroline, an event that impairs cell-wall biosynthesis and leads to bacterial death. The triggering of the allosteric effect takes place by binding of the first antibiotic molecule 60 Å away from the active site of PBP2a within the core of the allosteric site. We document, by kinetic studies and by determination of three X-ray structures of the mutant variants of PBP2a that result in resistance to ceftaroline, that the effect of these clinical mutants is the disruption of the allosteric trigger in this important protein in MRSA. This is an unprecedented mechanism for antibiotic resistance.
AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of -lactamase, a key enzyme of -lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive "closed" conformation. The transition of the protein from this inactive conformation to the active "open" conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å ) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.
obtained by irradiating the crystals for 10 min. with a blue laser (508 nm). Diffraction data were collected at the PXII beamline of the Swiss Light Source at 100K using a MarResearch CCDC detector. The structures were solved in space group P2 1 2 1 2 1 by molecular replacement using the monomer of Dronpa (pdb code 2z1o) as search model. The asymmetric unit contains 12 monomers, associated in three tetramers. The structures were refined at an effective resolution of 3.0 Å for the on-state and 3.15 Å for the off-state. R/R free values converged at 21.1/25.7% for the on-state and 21.3/25.0% for the off-state. PDM1-4 exhibits a β-barrel structure typical for GFP-like proteins. Furthermore, a light-driven cis-trans isomerization of the chromophore is observed. From the structures of the on-and off-states we elucidate that the presence of nickel ions, interacting with His 194 and His 212, decreases the flexibility of the β-strands, resulting in the slower switching kinetics of PDM1-4. The photoswitching mechanism of reversible photoswitchable fluorescent proteins not only arises from the flexibility of the chromophore accompanied by a rearrangement of the proximate residues, but is also influenced by the flexibility of the β-strands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.