The human vagina is a dynamic ecosystem in which homeostasis depends on mutually beneficial interactions between the host and their microorganisms. However, the vaginal ecosystem can be thrown off balance by a wide variety of factors. Bacterial vaginosis (BV) is the most common vaginal infection in women of childbearing age, but its etiology is not yet fully understood, with different controversial theories being raised over the years. What is generally accepted is that BV is often characterized by a shift in the composition of the normal vaginal microbiota, from a Lactobacillus species dominated microbiota to a mixture of anaerobic and facultative anaerobic bacteria. During BV, a polymicrobial biofilm develops in the vaginal microenvironment, being mainly composed of Gardnerella species. The interactions between vaginal microorganisms are thought to play a pivotal role in the shift from health to disease and might also increase the risk of sexually transmitted infections acquisition. Here we review the current knowledge regarding the specific interactions that occur in the vaginal niche and discuss mechanisms by which these interactions might be mediated. Furthermore, we discuss the importance of novel strategies to fight chronic vaginal infections.
Bacterial vaginosis (BV) is the most common vaginal infection among women of reproductive age. A hallmark of BV is the presence of a highly structured polymicrobial biofilm on the vaginal epithelium, presumably initiated by facultative anaerobes of the genus Gardnerella, which then becomes a scaffold for other species to adhere to. One of the species often found incorporated in Gardnerella mediated biofilms is Atopobium vaginae. Interestingly, A. vaginae is very rarely found without the presence of Gardnerella. However, not much is known regarding the interactions between A. vaginae and Gardnerella species. This study assessed biological interactions between Gardnerella vaginalis and A. vaginae. In our in vitro model, by using specific Gardnerella and A. vaginae Peptide Nucleic Acid (PNA)-Fluorescence In Situ Hybridization (FISH) probes, we confirmed that A. vaginae was able to incorporate a pre-formed G. vaginalis biofilm, accounting for up to 20% of the total number of biofilm cells. However, our findings showed that almost 92% of A. vaginae cells lost viability after 48 h of mono-species planktonic growth, but were able to maintain viability when co-cultured with Gardnerella or after pre-conditioning with cell-free supernatant of Gardnerella cultures. While the in vitro conditions are very different from the in vivo microenvironment, this study contributes to a better understanding of why A. vaginae vaginal colonization rarely occurs in the absence of Gardnerella. Overall, this highlights the importance of microbial interactions between BV-associated bacteria and demands more studies focused on the polymicrobial bacterial communities found in BV.
Bacterial vaginosis (BV) is associated with a highly structured polymicrobial biofilm on the vaginal epithelium where Gardnerella species presumably play a pivotal role. Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia are vaginal pathogens detected during the early stages of incident BV. Herein, we aimed to analyze the impact of A. vaginae and P. bivia on a pre-established G. vaginalis biofilm using a novel in vitro triple-species biofilm model. Total biofilm biomass was determined by the crystal violet method. We also discriminated the bacterial populations in the biofilm and in its planktonic fraction by using PNA FISH. We further analyzed the influence of A. vaginae and P. bivia on the expression of key virulence genes of G. vaginalis by quantitative PCR. In our tested conditions, A. vaginae and P. bivia were able to incorporate into pre-established G. vaginalis biofilms but did not induce an increase in total biofilm biomass, when compared with 48-h G. vaginalis biofilms. However, they were able to significantly influence the expression of HMPREF0424_0821, a gene suggested to be associated with biofilm maintenance in G. vaginalis. This study suggests that microbial relationships between co-infecting bacteria can deeply affect the G. vaginalis biofilm, a crucial marker of BV.
Background Bacterial vaginosis (BV) is one of the most common vaginal infections worldwide. It is associated with the presence of a dense polymicrobial biofilm on the vaginal epithelium, formed mainly by Gardnerella species. The biofilm also contains other anaerobic species, but little is known about their role in BV development. Aim To evaluate the influence of different culture media on the planktonic and biofilm growth of six cultivable anaerobes frequently associated with BV, namely Gardnerella sp., Atopobium vaginae, Lactobacillus iners, Mobiluncus curtisii, Peptostreptococcus anaerobius and Prevotella bivia. Methods A total of nine different culture media compositions, including commercially available and chemically defined media simulating genital tract secretions, were tested in this study. Planktonic cultures and biofilms were grown under anaerobic conditions (10% carbon dioxide, 10% helium and 80% nitrogen). Planktonic growth was assessed by optical density measurements, and biofilm formation was quantified by crystal violet staining. Results Significant planktonic growth was observed for Gardnerella sp., A. vaginae and L. iners in New York City III broth, with or without ascorbic acid supplementation. Biofilm quantification showed high in vitro biofilm growth for Gardnerella sp., P. anaerobius and P. bivia in almost all culture media excluding Brucella broth. Contrary, only New York City III broth was able to promote biofilm formation for A. vaginae, L. iners and M. curtisii. Conclusions Our data demonstrate that New York City III broth relative to the other tested media is the most conducive for future studies addressing polymicrobial biofilms development as this culture medium allowed the formation of significant levels of single-species biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.