Solid substrate fermentation (SSF) of Monascus purpureus on rice is a promising new technology for obtaining natural pigments. However, before attempts can be made at maximizing pigment yield, all significant macroscopic compounds should be assayed. Here, Monascus purpureus has been grown on rice in batch mode, and the evolution of the main components, biomass, residual rice, O(2), CO(2), ethanol, acetic acid, and pigments, have been followed. This set of data, never previously studied for Monascus SSF, allowed both the performance of a macroscopic elemental balance, which accounted for 83-94% of the initial substrate carbon, and a check of data consistency. Standard consistency analysis showed a significant underestimation of the nitrogen fraction of biomass, but it was unable to discriminate the errors in the carbon balance as a result of the simultaneous presence of two gross errors in the system. A simple stoichiometric model in tandem with consistency analysis explained unaccounted carbon as an underestimation of CO(2) and ethanol. Using the simplified method to estimate ethanol, the macroscopic balance accounted for 87-99% of the initial carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.