A quantitative trait locus (QTL) analysis of female reproductive data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six F1 boars and 23 F1 sows, progeny of six LW boars and six MS sows, produced 573 F2 females and 530 F2 males. Six traits, i.e. teat number (TN), age at puberty (AP), ovulation rate (OR), weight at mating (WTM), number of viable embryos (NVE) and embryo survival (ES) at 30 days of gestation were analysed. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross (LC) regression and a half-full sib (HFS) maximum likelihood test. Genome-wide (GW) highly significant (P , 0.001) QTL were detected for WTM on SSC 7 and for AP on SSC 13. They explained, respectively, 14.5% and 8.9% of the trait phenotypic variance. Other GW significant (P , 0.05) QTL were detected for TN on SSC 3, 7, 8, 16 and 17, for OR on SSC 4 and 5, and for ES on SSC 9. Two additional chromosome-wide significant (P , 0.05) QTL were detected for TN, three for WTM, four for AP, three for OR, three for NVE and two for ES. With the exception of the two above-mentioned loci, the QTL explained from 1.2% to 4.6% of trait phenotypic variance. QTL alleles were in most cases not fixed in the grand-parental populations and Meishan alleles were not systematically associated with higher reproductive performance.
Effects of selection for ovulation rate or prenatal survival were examined using data from 3 pigs lines derived from the same base Large White population. Two lines were selected for 6 generations on high ovulation rate at puberty (OR line) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS line). The third line was an unselected control line. Genetic parameters for ovulation rate on the left, right, and both ovaries at puberty (ORPL, ORPR, and ORP, respectively) and at fertilization (ORFL, ORFR, and ORF, respectively), total number of piglets born (TNB) per litter, prenatal survival (PS = TNB/ORF), and PS corrected for ovulation rate (CPS = PS + 0.018ORF) were estimated using REML methodology. Responses to selection were estimated by computing differences between OR or PS and control lines at each generation using least squares and mixed models methodology. Average genetic trends were computed by regressing line differences on generation number. Realized heritabilities were estimated using standard procedures. Heritability estimates were 0.17, 0.11, 0.34, 0.13, 0.09, 0.33, 0.14, 0.11, and 0.17 (SE = 0.01 to 0.03) for ORPL, ORPR, ORP, ORFL, ORFR, ORF, PS, CPS, and TNB, respectively. Realized heritabilities were 0.37 +/- 0.08 and 0.10 +/- 0.09 for ORP and CPS, respectively. The different measures of ovulation rate had strong genetic correlations (r(g) > 0.7). The ORF had midrange negative genetic correlations with PS and CPS (-0.45 +/- 0.07 and -0.42 +/- 0.08, respectively). The ORP also had an antagonistic genetic relationship with PS (-0.26 +/- 0.07) but was almost independent from CPS (-0.02 +/- 0.11). The TNB was moderately correlated with ORP and ORF (r(g) = 0.41 +/- 0.09 for both traits). Average genetic trends in OR and PS lines were, respectively, 0.49 +/- 0.10 and 0.11 +/- 0.10 for ORP, and 0.43 +/- 0.11 and 0.11 +/- 0.11 for ORF. Responses to selection were slightly superior in the left than in the right ovary. No significant difference was found for PS or CPS in any of the lines. The TNB did not change in the OR line but significantly improved in the PS line (0.24 +/- 0.11 piglets/generation).
Effects of selection for reproductive traits were estimated using data from 3 pig lines derived from the same Large White population base. Two lines were selected for 6 generations on high ovulation rate at puberty (OR line) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS line). The third line was an unselected control line. Genetic parameters for age and BW at puberty (AP and WP); number of piglets born alive, weaned, and nurtured (NBA, NW, and NN, respectively); proportions of stillbirth (PSB) and survival from birth to weaning (PSW); litter and average piglet BW at birth (LWB and AWB), at 21 d (LW21 and AW21), and at weaning (LWW and AWW) were estimated using REML methodology. Heritability estimates were 0.38 +/- 0.03, 0.46 +/- 0.03, 0.16 +/- 0.01, 0.08 +/- 0.01, 0.09 +/- 0.01, 0.04 +/- 0.01, 0.04 +/- 0.02, 0.19 +/- 0.02, 0.10 +/- 0.02, 0.10 +/- 0.02, 0.36 +/- 0.02, 0.27 +/- 0.01, and 0.24 +/- 0.01 for AP, WP, NBA, PSB, NW, NN, PSW, LWB, LW21, LWW, AWB, AW21, and AWW, respectively. The measures of litter size showed strong genetic correlations (r(a) >/= 0.95) and had antagonistic relations with PSB (r(a) = -0.59 to -0.75) and average piglet BW (r(a) = -0.19 to -0.46). They also had strong positive genetic correlations with prenatal survival (r(a) = 0.67 to 0.78) and moderate ones with ovulation rate (r(a) = 0.36 to 0.42). Correlations of litter size with PSW were negative at birth but positive at weaning. The OR and PS lines were negatively related to PSW and average piglet BW. Puberty traits had positive genetic correlations with OR and negative ones with PS. Genetic trends were estimated by computing differences between OR or PS and control lines at each generation using least squares and mixed model methodologies. Average genetic trends were computed by regressing line differences on generation number. Significant (P < 0.05) average genetic trends were obtained in OR and PS lines for AP (respectively, 2.1 +/- 0.9 and 3.2 +/- 1.0 d/generation) and WP (respectively, 2.0 +/- 0.5 and 1.8 +/- 0.5 d/generation) and in the PS line for NBA (0.22 +/- 0.10 piglet/generation). Tendencies (P < 0.10) were also observed for LWB (0.21 +/- 0.12 kg/generation) and AWW (-0.25 +/- 0.14 kg/generation) in the PS line. Selection on components of litter size can be used to improve litter size at birth, but result in undesirable trends for preweaning survival.
Correlated effects of selection for components of litter size on growth and backfat thickness were estimated using data from 3 pig lines derived from the same base population of Large White. Two lines were selected for 6 generations on either high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (C). Genetic parameters for individual piglet BW at birth (IWB); at 3 wk of age (IW3W); and at weaning (IWW); ADG from birth to weaning (ADGBW), from weaning to 10 wk of age (ADGPW), and from 25 to 90 kg of BW (ADGT); and age (AGET) and average backfat thickness (ABT) at 90 kg of BW were estimated using REML methodology applied to a multivariate animal model. In addition to fixed effects, the model included the common environment of birth litter, as well as direct and maternal additive genetic effects as random effects. Genetic trends were estimated by computing differences between OR or PS and C lines at each generation using both least squares (LS) and mixed model (MM) methodology. Average genetic trends for direct and maternal effects were computed by regressing line differences on generation number. Estimates of direct and maternal heritabilities were, respectively, 0.10, 0.12, 0.20, 0.24, and 0.41, and 0.17, 0.33, 0.32, 0.41, and 0.21 (SE = 0.03 to 0.04) for IWB, IW3W, IWW, ADGBW, and ADGPW. Genetic correlations between direct and maternal effects were moderately negative for IWB (-0.21 +/- 0.18), but larger for the 4 other traits (-0.59 to -0.74). Maternal effects were nonsignificant and were removed from the final analyses of ADGT, AGET, and ABT. Direct heritability estimates were 0.34, 0.46, and 0.21 (SE = 0.03 to 0.05) for ADGT, AGET, and ABT, respectively. Direct and maternal genetic correlations of OR with performance traits were nonsignificant, with the exception of maternal correlations with IWB (-0.28 +/- 0.13) and ADGPW (0.23 +/- 0.11) and direct correlation with AGET (-0.23 +/- 0.09). Prenatal survival also had low direct but moderate to strong maternal genetic correlations (-0.34 to -0.65) with performance traits. The only significant genetic trends were a negative maternal trend for IBW in the OR line and favorable direct trends for postweaning growth (ADGT and AGET) in both lines. Selection for components of litter size has limited effects on growth and backfat thickness, although it slightly reduces birth weight and improves postweaning growth.
A QTL analysis of female reproductive data from a 3-generation experimental cross between Meishan and Large White pig breeds is presented. Six F(1) boars and 23 F(1) sows, progeny of 6 Large White boars and 6 Meishan sows, produced 502 F(2) gilts whose reproductive tract was collected after slaughter at 30 d of gestation. Five traits [i.e., the total weight of the reproductive tract, of the empty uterine horns, of the ovaries (WOV), and of the embryos], as well as the length of uterine horns (LUH), were measured and analyzed with and without adjustment for litter size. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross regression and a half-full sib maximum likelihood test. A total of 18 genome-wide significant (P < 0.05) QTL were detected on 9 different chromosomes (i.e., SSC 1, 5, 6, 7, 9, 12, 13, 18, and X). Five genome-wide significant QTL were detected for LUH, 4 for weight of the empty uterine horns and WOV, 2 for total weight of the reproductive tract, and 1 for weight of the embryos. Twenty-two additional suggestive QTL were also detected. The largest effects were obtained for LUH and WOV on SSC13 (9.2 and 7.0% of trait phenotypic variance, respectively). Meishan alleles had both positive (e.g., on SSC7) and negative effects (e.g., on SSC13) on the traits investigated. Moreover, the QTL were generally not fixed in founder breeds, and opposite effects were in some cases obtained in different families. Although reproductive tract characteristics had only a moderate correlation with reproductive performances, most of the major QTL detected in this study were previously reported as affecting female reproduction, generally with reduced significance levels. This study thus shows that focusing on traits with high heritability might help to detect loci involved in low heritability major traits for breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.