This paper applies acoustic analysis of Sound Transmission Loss (STL) through infinite Functionally Graded (FG) thick plate employing Hyperbolic Shear Deformation Theory (HSDT). The procedure for applying a FG plate is followed by considering the material properties are changed continually based on power-law distribution of the materials in terms of volume fraction. The main benefit of HSDT can be justified knowing the fact that, it uses parabolic transverse shear strain across thickness direction. Therefore, no need to enter the extra effect of shear correction coefficient factor. Besides, the displacement field is extended as a combination of polynomial as well as hyperbolic tangent function by neglecting the effect of thickness stretching. Furthermore, the equations of motion are obtained employing Hamilton's Principle. To provide an analytical solution based on HSDT, equations of motion are combined with acoustic wave equations. Moreover, some comparisons are made with the known theoretical and experimental results available in literature to verify the accuracy and efficiency of the current formulation. These comparisons reveal an excellent agreement. Consequently, some configurations are presented to demonstrate which parameters appear to be effective to improve the behavior of STL including the effects of modulus of elasticity and density in the thickness direction with respect to various power-law distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.