Through Silicon vias (TSVs) are a key breakthrough in 3D technology to shorten global interconnects and enable the heterogeneous integration. However, TSVs also introduce an important source of noise coupling arising from electrical coupling between TSVs and the active devices. This paper investigates the TSV noise coupling to active devices including both FinFETs and planar transistors based on twoport S-parameter measurements up to 40 GHz. The measurements clearly show that nFinFETs have better noise coupling immunity than planar nNMOSFETs. The dominant coupling mechanisms were also identified for both types of active devices.Moreover, calibrated TCAD models were developed. We show that via-last TSV architectures with thick liners ("donut TSVs") and scaled TSV diameters reduce the noise coupling to active devices. Finally, both coupling and stress induced saturation current variations as a function of TSV to active devices distance were investigated. This allows us to propose a novel model for the TSV Keep Out Zone (KOZ) including electromagnetic coupling effects.978-1-4799-8609-5/15/$31.00 ©2015 IEEE
High speed TSV signals can penetrate through the dielectric liner material, transfer in the silicon substrate and degrade the performance of FEOL devices. In this paper we investigate TSV noise coupling to active device including both FinFET and planar transistors. Calibrated TCAD models are used to perform time domain analysis and understand the mechanisms of substrate noise interaction with active device. Parametric simulations are performed in order to understand the tradeoffs among different design parameters. The results demonstrate superior substrate noise immunity of FinFETs over equivalent planar transistors. In addition we show that a scaled TSV diameter, a novel TSV architecture with thick polymer liner, placing the substrate contact closer to active device and a TSV guard ring helps to mitigate the TSV noise. Finally the importance of electromagnetic coupling effects on Keep Out Zone (KOZ) extraction is illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.