There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPs) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic phases at the interfaces between complex oxides, in particular between two non-magnetic insulators LaAlo 3 and srTio 3 , have stimulated the oxide community. However, no EPs has been observed in this system despite a theoretical prediction. Here, we report an EPs state at the LaAlo 3 /srTio 3 interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a (superconductor like) diamagnetic/paramagnetic phase below 60 K. The EPs is due to the selective occupancy (in the form of 2D-nanoscopic metallic droplets) of interface sub-bands of the nearly degenerate Ti orbital in the srTio 3 . The observation of this EPs demonstrates the electronic and magnetic phenomena that can emerge at the interface between complex oxides mediated by the Ti orbital.
The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO3/SrTiO3, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivity would be expected, for example, for the interface between LaAlO3 and (110)-oriented SrTiO3, which should not have a polarization discontinuity. Here we report the observation of unexpected conductivity at the LaAlO3/SrTiO3 interface prepared on (110)-oriented SrTiO3, with a LaAlO3-layer thickness-dependent metal-insulator transition. Density functional theory calculation reveals that electronic reconstruction, and thus conductivity, is still possible at this (110) interface by considering the energetically favourable (110) interface structure, that is, buckled TiO2/LaO, in which the polarization discontinuity is still present. The conductivity was further found to be strongly anisotropic along the different crystallographic directions with potential for anisotropic superconductivity and magnetism, leading to possible new physics and applications.
The use of graphene electronics in space will depend on the radiation hardness of graphene. The damage threshold of graphene samples, subjected to 2 MeV H + irradiation, was found to increase with layer number and also when the graphene layer was supported by a substrate. The thermal properties of graphene as a function of the number of layers or as influenced by the substrate argue against a thermal model for the production of damage by the ion beam. We propose a model of intense electronically-stimulated surface desorption of the atoms as the most likely process for this damage mechanism.
Selectively creating regions of spatially varying thickness may enable the utilization of the electronic properties of N-layer (N=1 or more) graphene and other similar layered materials (e.g., topological insulators or layered superconductors) for novel devices and functionalities on a single chip. The ablation threshold energy density increases dramatically for decreasing layer numbers of graphene originating from the dimensional crossover of the specific heat. For the 2D regime of graphite (up to N≈7) the dominant flexural mode specific heat (due to its N-1 dependence) gives rise to a strong layer number-dependence on the pulsed laser ablation threshold energy density, while for 3D regime (N>>7) the ablation threshold saturates due to dominant acoustic mode specific heat. As a result, several energy density windows exist between the minimum energy densities that are required for ablating single, bi, or more layers of graphene, allowing layer number selectivity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.