Complex polymer systems, which exhibit multiple distributions in their molecular parameters can be characterized by coupled liquid chromatographic methods. The latter combine entropic (exclusion) and enthalpic (interaction) retention mechanisms. However, recent experimental results suggest that some coupled liquid chromatographic methods may suffer from incomplete sample recovery. This refers, for example, to liquid chromatography under critical conditions of enthalpic interactions and to eluent gradient liquid chromatography. Sample recovery in both latter methods was investigated for selected model systems applying adsorption retention mechanism. Reduced sample recovery was confirmed for both methods. It was revealed that even very high final strength of mobile phase may be insufficient for complete elution of polymer samples in eluent gradient polymer liquid chromatography.
A novel high performance liquid chromatographic method for separation of synthetic polymers has been tested. It involves combination of the enthalpic and entropic retention mechanisms, resulting in increased selectivity of separation within a specific molar mass range. In this present case, the enthalpic retention mechanism is adsorption of macromolecules on a bare silica gel column packing. Under critical conditions of enthalpic interactions, homopolymers are known to elute irrespective of their molar mass. However, in the vicinity of critical conditions, a situation can be identified when retention volumes (V(R)) rapidly decrease with increasing molar mass. Typically, this happens for polymer species close to or above their exclusion limit observed with the same column in the absence of enthalpic interactions between macromolecules and packing, that is near "ideal SEC" conditions. The dependence of polymer retention volume on molar mass closely resembles size exclusion conditions. However, the witnessed rate of change in V(R )with polymer molar mass is more pronounced, thus indicating increased selectivity of separation. This situation not only offers the benefit of more selective separation according to molar mass but efficient discrimination of macromolecules possessing different nature and interactivity with the column packing can be accomplished as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.