We have developed 46 primer pairs from exon sequences flanking polymorphic introns of 23 Fragaria gene sequences and one Malus sequence deposited in the EMBL database. Sequencing of a set of the PCR products amplified with the novel primer pairs in diploid Fragaria showed the products to be homologous to the sequences from which the primers were originally designed. By scoring the segregation of the 24 genes in two diploid Fragaria progenies FV x FN (F. vesca x F. nubicola F(2)) and 815 x 903BC (F. vesca x F. viridis BC(1)) 29 genetic loci at discrete positions on the seven linkage groups previously characterised could be mapped, bringing to 35 the total number of known function genes mapped in Fragaria. Twenty primer pairs, representing 14 genes, amplified a product of the expected size in both Malus and Prunus. To demonstrate the applicability of these gene-specific loci to comparative mapping in Rosaceae, five markers that displayed clear polymorphism between the parents of a Malus and a Prunus mapping population were selected. The markers were then scored and mapped in at least one of the two additional progenies.
Background: Raspberry breeding programmes worldwide aim to produce improved cultivars to satisfy market demands and within these programmes there are many targets, including increased fruit quality, yield and season, and improved pest and disease resistance and plant habit. The large raspberry aphid, Amphorophora idaei, transmits four viruses and vector resistance is an objective in raspberry breeding. The development of molecular tools that discriminate between aphid resistance genes from different sources will allow the pyramiding of such genes and the development of raspberry varieties with superior pest resistance. We have raised a red raspberry (Rubus idaeus) F 1 progeny from the cross 'Malling Jewel' × 'Malling Orion' (MJ × MO), which segregates for resistance to biotype 1 of the aphid Amphorophora idaei and for a second phenotypic trait, dwarf habit. These traits are controlled by single genes, denoted (A 1 ) and (dw) respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.