This study conducted several tensile tests to determine the effect of 20-30 nm silicon dioxide nanopowder on the mechanical properties of composite material polyester/carbon fiber. Samples were prepared at weight fractions of carbon fibers (i.e. 25, 40, and 55%), with different weights of silica nanoparticles (i.e. 0.16, 0.2, and 0.24%). The experimental results showed that the mechanical properties improved at various ratios as a result of increasing the weight fraction of the carbon fibers and the ratio of the silicon dioxide nanopowder in the composition of the composite samples. The maximum increase by 33.49% resulting from increasing the weight fraction from 25% to 40% at 0.16% silicon dioxide nanopowder. The maximum effect of increasing the weight of the silicon dioxide nanopowder from 0.2 to 0.24 resulted from increasing the stress by 33.53% at weight fraction of 25%. The SEM images of the structure showed the distribution of nanoparticles and crack growth in the region neighboring the fracture after the tensile test at different weight fractions of carbon fibers and nano-silica particles. The improvement in the mechanical properties of this low-cost composite material when using nanomaterials has potential for use in multiple applications, including boat hulls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.