In order to develop a simple, reliable and low cost enzymatic method for the determination of phenolic compounds we studied polyphenol oxidase activity of crude eggplant (S. melongena) extract using 13 phenolic compounds. Catechol, caffeic and chlorogenic acids, and l-DOPA have been rapidly oxidized with the formation of colored products. Monophenolic compounds have been oxidized at a much slower speed. Ferulic acid, quercetin, rutin, and dihydroquercetin have been found to inhibit polyphenol oxidase activity of crude eggplant extract. The influence of pH, temperature, crude eggplant extract amount, and 3-methyl-2-benzothiazolinone hydrazone (MBTH) concentration on the oxidation of catechol, caffeic acid, chlorogenic acid, and l-DOPA has been investigated spectrophotometrically. Michaelis constants values decrease by a factor of 2 to 3 in the presence of MBTH. Spectrophotometric (cuvette and microplate variants) and smartphone-assisted procedures for phenolic compounds determination have been proposed. Average saturation values (HSV color model) of the images of the microplate wells have been chosen as the analytical signal for smartphone-assisted procedure. LOD values for catechol, caffeic acid, chlorogenic acid, and l-DOPA equaled 5.1, 6.3, 5.8 and 30.0 µM (cuvette procedure), 12.2, 13.2, 13.2 and 80.4 µM (microplate procedure), and 23.5, 26.4, 20.8 and 120.6 µM (smartphone procedure). All the variants have been successfully applied for fast (4-5 min) and simple TPC determination in plant derived products and l-DOPA determination in model biological fluids. The values found with smartphone procedure are in good agreement with both spectrophotometric procedures values and reference values. Using crude eggplant extract- mediated reactions combined with smartphone camera detection has allowed creating low-cost, reliable and environmentally friendly analytical method for the determination of phenolic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.