The physical process of generation of waves by wind is extremely complex, uncertain and not yet fully understood. Despite a variety of deterministic models presented to predict the heights and periods of waves from the characteristics of the generating wind, a large scope still exists to improve on the existing models or to provide alternatives to them. This paper explores the possibility of employing the relatively recent technique of neural networks for this purpose. A simple 3-layered feed forward type of network is developed to obtain the output of significant wave heights and average wave periods from the input of generating wind speeds. The network is trained with different algorithms and using three sets of data. The results show that an appropriately trained network could provide satisfactory results in open wider areas, in deep water and also when the sampling and prediction interval is large, such as a week. A proper choice of training patterns is found to be crucial in achieving adequate training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.