By exploiting advances in high-energy pulsed lasers, volume phase holographic diffraction gratings, and image intensified CCD cameras, a new Thomson scattering system has been designed to operate from 532 - 592 nm on the Pegasus Toroidal Experiment. The system uses a frequency-doubled, Q-switched Nd:YAG laser operating with an energy of 2 J at 532 nm and a pulse duration of 7 ns FWHM. The beam path is < 7m, the beam diameter remains ≤ 3 mm throughout the plasma, and the beam dump and optical baffling is located in vacuum but can be removed for maintenance by closing a gate valve. A custom lens system collects scattered photons from 15 cm < R(maj) < 85 cm at ~F∕6 with 14 mm radial resolution. Initial measurements will be made at 12 spatial locations with 12 simultaneous background measurements at corresponding locations. The estimated signal at the machine-side collection optics is ~3.5 × 10(4) photons for plasma densities of 10(19) m(-3). Typical plasmas measured will range from densities of mid-10(18) to mid-10(19) m(-3) with electron temperatures from 10 to 1000 eV.
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
Many small uniform sources are integrating spheres often with a 1 % nonuniformity. By placing a cylindrical element between the two hemispheres we were able to reduce the nonuniformity to approximately 0.1 %. This makes such a calibration source much less sensitive to detector measurement-field size at the exit port.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.