Experimental aluminum alloy containing 0.8% Ca, 0.5% Zr, 0.5% Fe and 0.25% Si (wt.%), in the form of a long-length rod 12 mm in diameter was manufactured using an electromagnetic casting (EMC) technique. The extremely high cooling rate during alloy solidification (≈104 K/s) caused the formation of a favorable microstructure in the ingot characterized by a small size of the dendritic cells, fine eutectic particles of Ca-containing phases and full dissolution of Zr in Al the solid solution. Due to the microstructure obtained the ingots possess high manufacturability during cold forming (both drawing and rolling). Analysis of the electrical conductivity (EC) and microhardness of the cold rolled strip and cold drawn wire revealed that their temperature dependences are very close. The best combination of hardness and EC in the cold rolled strip was reached after annealing at 450 °C. TEM study of structure evolution revealed that the annealing mode used leads to the formation of L12 type Al3Zr phase precipitates with an average diameter of 10 nm and a high number density. Experimental wire alloy has the best combination of ultimate tensile strength (UTS), electrical conductivity (EC) (200 MPa and 54.8% IACS, respectively) and thermal stability (up to 450 °C) as compared with alloys based on the Al–Zr and Al– rare-earth metal (REM) systems. In addition, it is shown that the presence of calcium in the model alloy increases the electrical conductivity after cold forming operations (both drawing and rolling).
The influence of strain rate in the interval of (10−5–10−3) 1/s on room temperature tensile behavior, dislocation arrangement, deformation mechanisms, and fracture of austenitic stainless steel AISI 316L electrochemically charged with hydrogen was investigated. Independently on strain rate, hydrogen charging provides the increase in the yield strength of the specimens due to a solid solution hardening of austenite, but it slightly influences deformation behavior and strain hardening of the steel. Simultaneously, hydrogen charging assists surface embrittlement of the specimens during straining and reduces an elongation to failure, which both are strain rate-dependent parameters. Hydrogen embrittlement index decreases with increase in strain rate, which testifies the importance of hydrogen transport with dislocations during plastic deformation. The stress–relaxation tests directly confirm the hydrogen-enhanced increase in the dislocation dynamics at low strain rates. The interaction of the hydrogen atoms with dislocations and hydrogen-associated plastic flow are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.