A novel technique to predict the manufacturing process-induced distortions and deformations in thick unidirectional carbon fiber reinforced plastics laminates is detailed in this article. An integrated numerical model is developed to account for non-isothermal resin flow, related compaction, transient resin cure, and resin shrinkage effects to predict the final shape of the autoclave cured thick prepreg laminate. The associated physics are mathematically coupled to solve for the process variables interactively. The results illustrate reduction in the thickness of the laminate prior to the start of curing when initial fiber volume fractions are pre-set. This confirms that the initial transverse deformation of B-stage prepreg is due to the applied vacuum and/or pressure. Once curing initiates, deformation of the laminate due to compaction increases, proportionally, with the increase in fiber volume fraction. Furthermore, the thermo-chemical residual strains contribute to additional compaction. The final distorted shape observed in simulation of the originally flat laminate matches with the shape of the fabricated laminate with 6.6 mm thickness. A solution to minimize the distortion is discussed in detail. This procedure is extended to simulate a curved laminate’s processing; where, the shear moduli were observed to influence the final shape of the laminate. The findings are presented and deliberated in this article.
Thick laminated composites are manufactured commonly by vacuum bagging of fiber-resin mix or prepregs on a suitable mould and, subsequently curing the lay-up at high temperature and pressure in an either autoclave or oven. At these pressures and temperatures, excess resin bleeds out of the lay-up during the initial stages of the curing. The amount of resin bleed is also a function of the bleeder parameters. Bleeder is a porous fibrous media that is laid around stacked lay-up to provide pathway for volatiles as well as absorb and hold the excess resin. Thicker or highly porous bleeders generally absorb higher amount of resin resulting in a resin starved laminate whereas very thin or denser bleeder leads to resin-rich areas within the laminate. It is thus important to select optimum bleeder parameters in order to achieve a desired resin volume fraction and its uniformity in a composite laminate upon curing.
This paper details the simulation of the manufacturing of a thick laminated composite, where a significant amount resin is likely to flow out of a curing lay-up, leading to an optimization of bleeder parameters. A coupled, transient FE analysis is conducted that involves not only the heat transfer, resin flow and cure reaction kinetics simulation but also the simulation of the compaction of the wet laminate and the bleeder layers until the laminate is fully cured. Details of an experiment conducted to find compression characteristics of bleeder of varying thickness and the number of layers and related data that was used in the FE analysis are discussed in this paper.
It is found that bleeder thickness significantly affects the amount of resin bleeding out from the curing laminate. As a result, the resin volume fraction of the laminate is affected. Case studies carried out to highlight the optimum bleeder thickness for a lay-up, and the method used to decide the thickness and the number of bleeder layers, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.